Combinatorics and Physics

Chapter 1 Introduction to enumerative combinatorics, ordinary generating functions

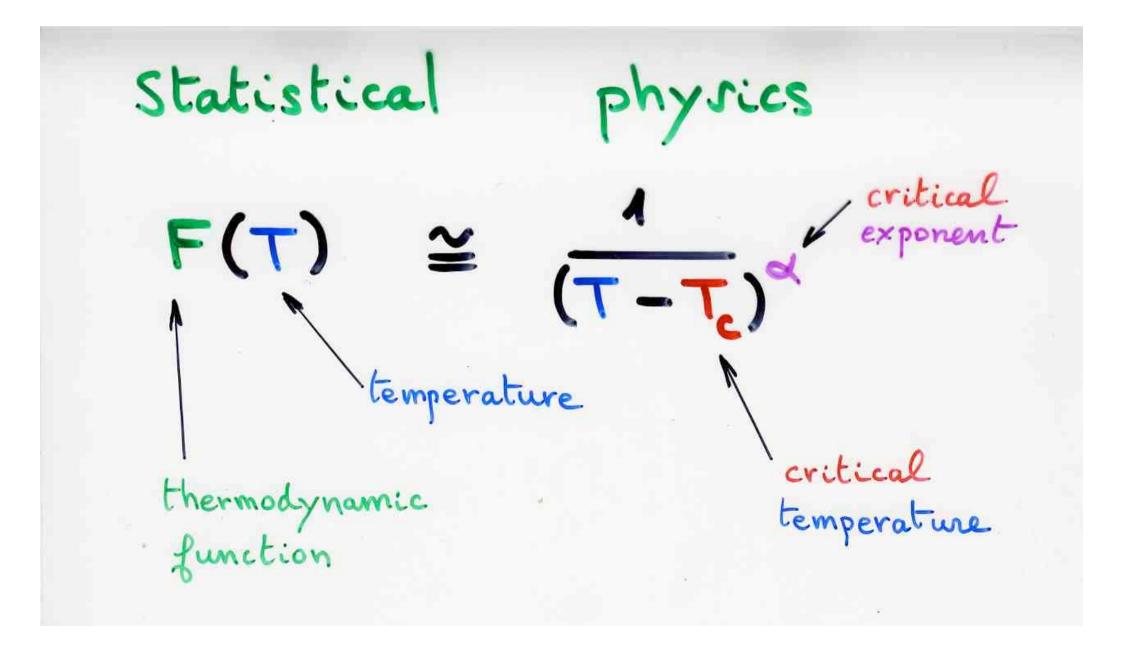
IIT-Madras 21 January 2015 Xavier Viennot CNRS, LaBRI, Bordeaux <u>cours.xavierviennot.org</u>

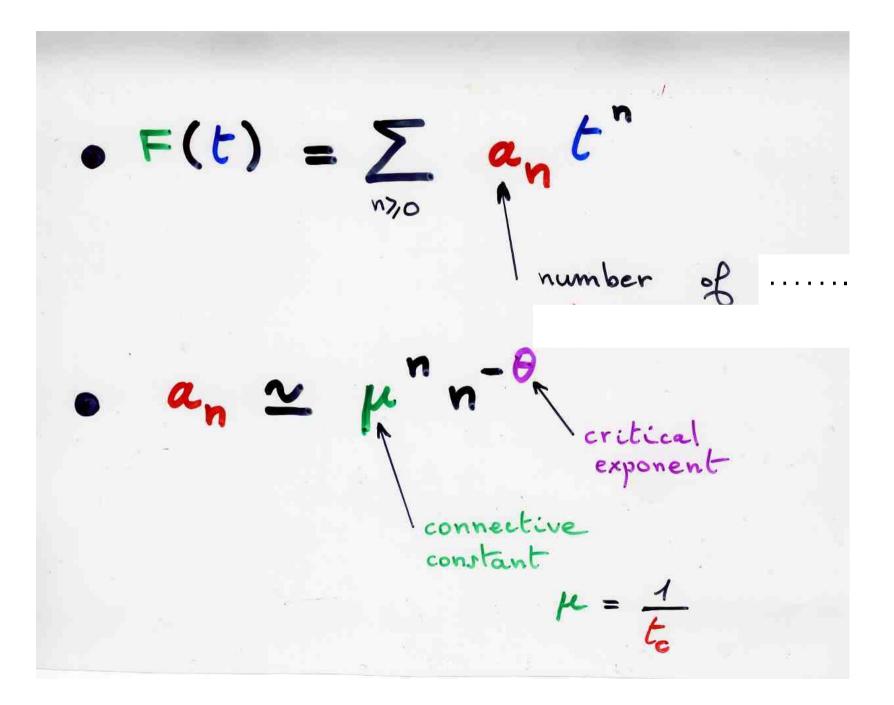
generating function in combinatorics

and

thermodynamic function in statistical mechanics

Phase transition critical phenomena Physics exactly solved model Baxter (1982) Onsager (1944) Ising model Potts, ice model Temperley-Liel (1971) Baxter (1982) exactly solved models

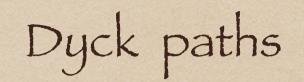


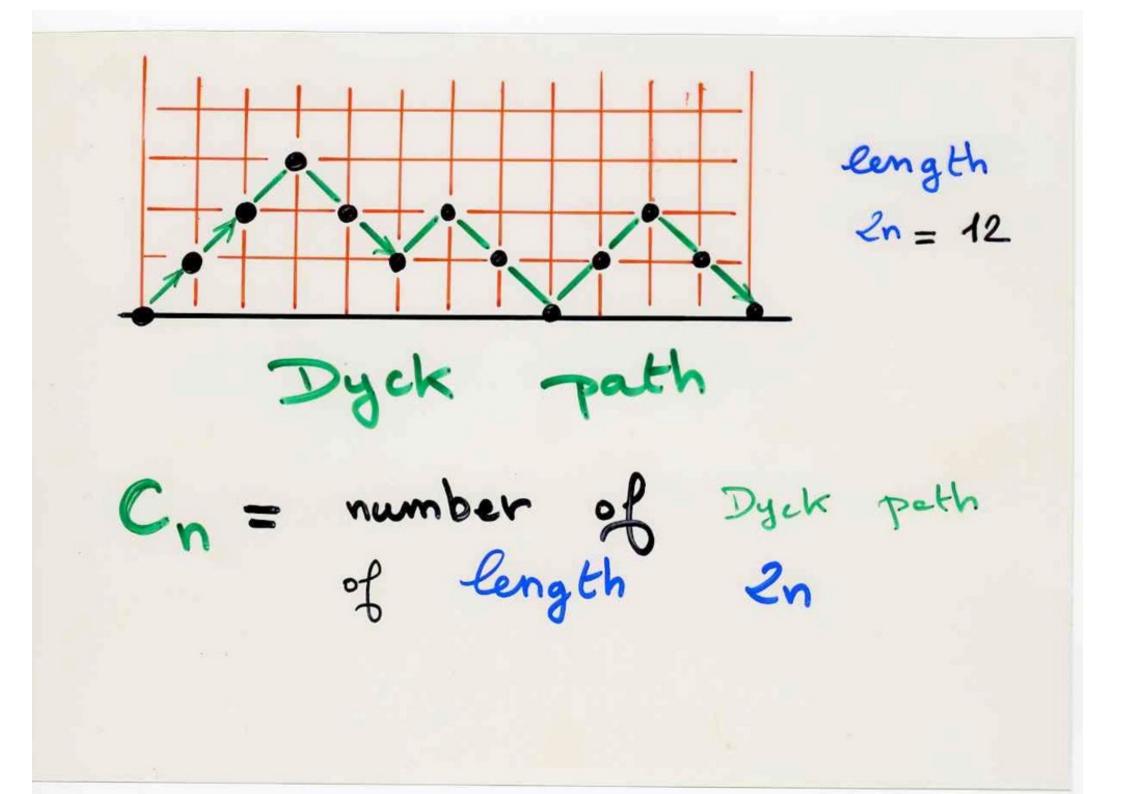


analytic combinatorics

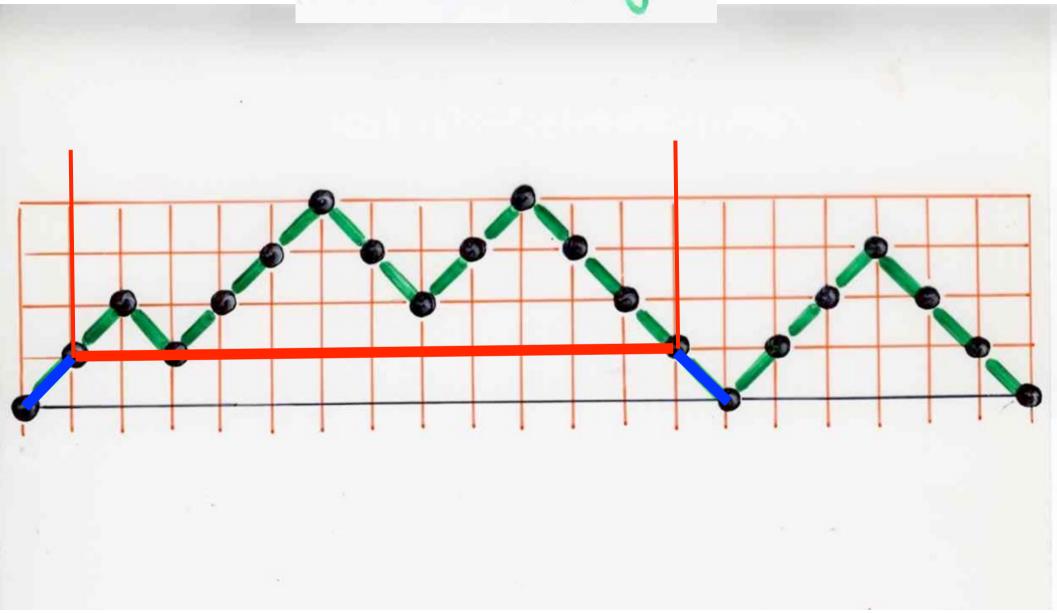
Cambridge University Press

P.Flajolet

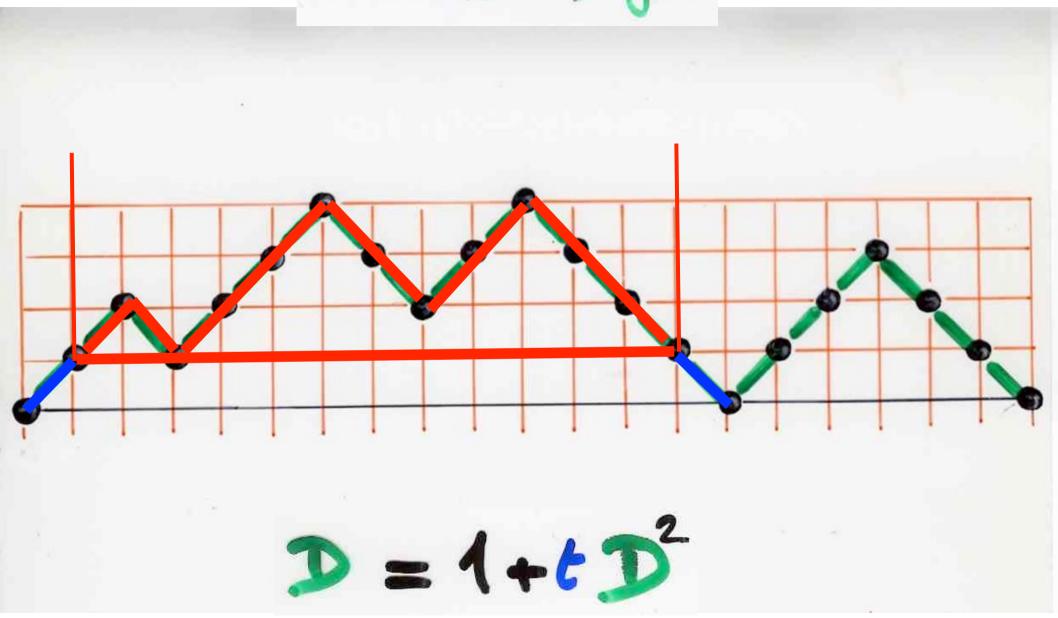


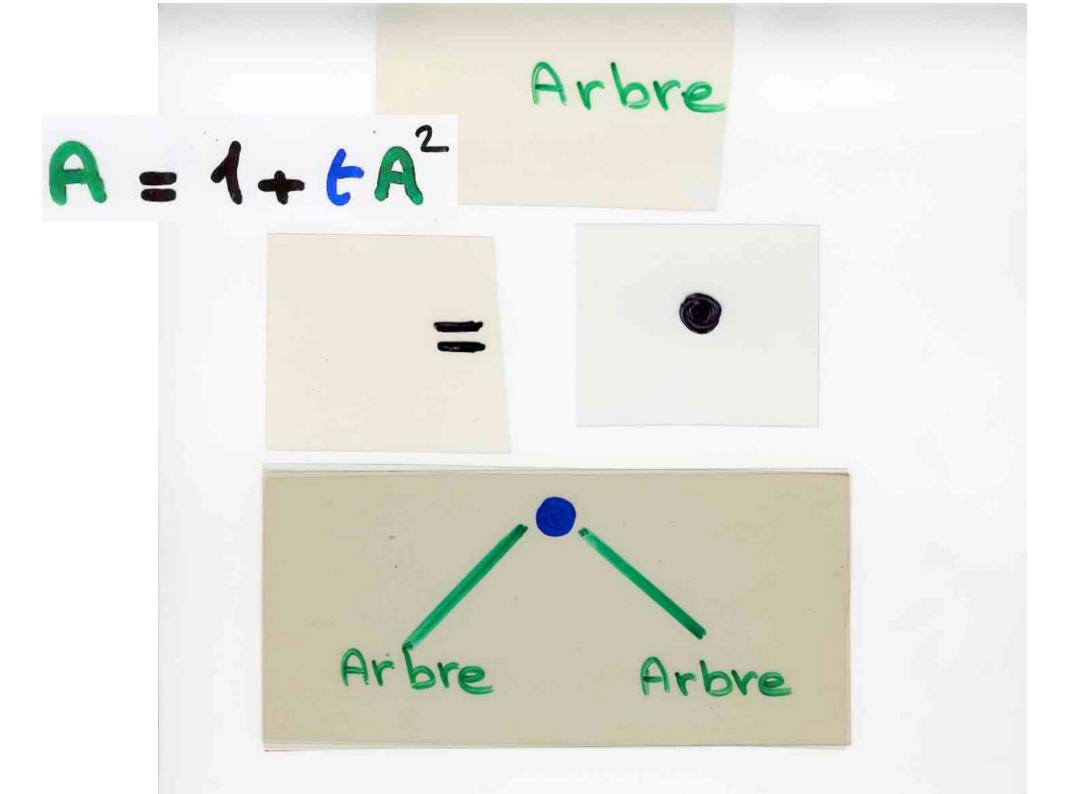


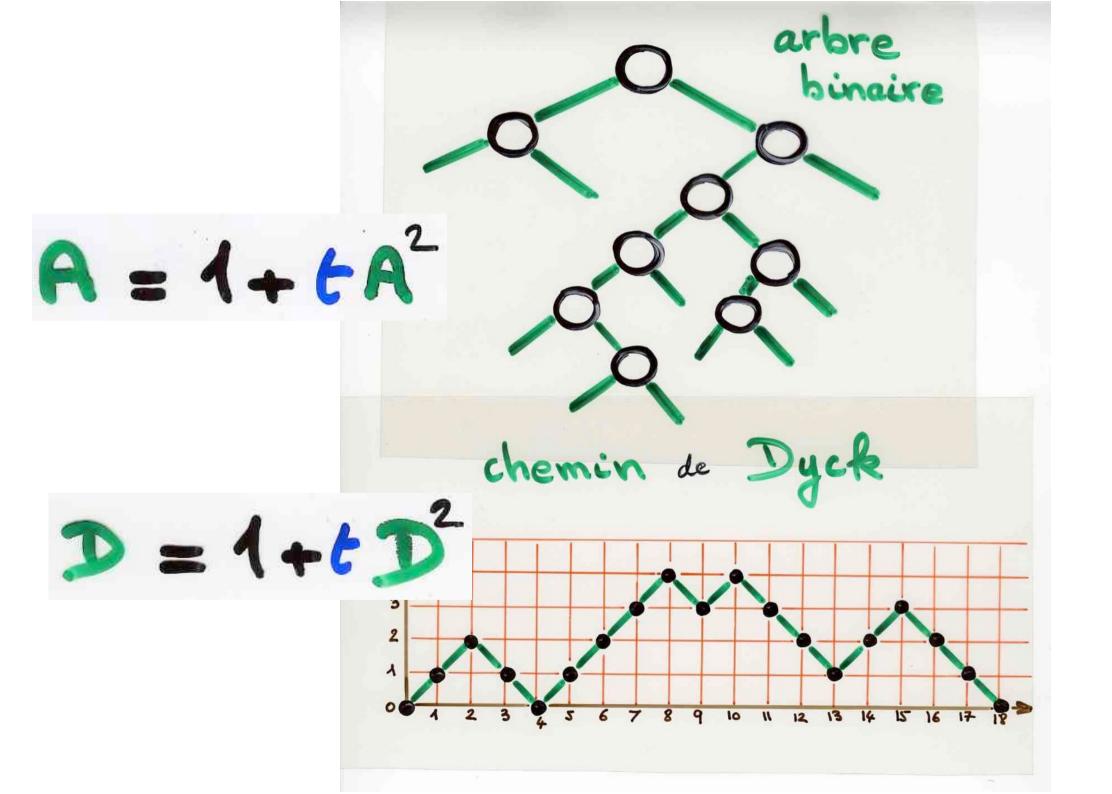
chemins de Dyck



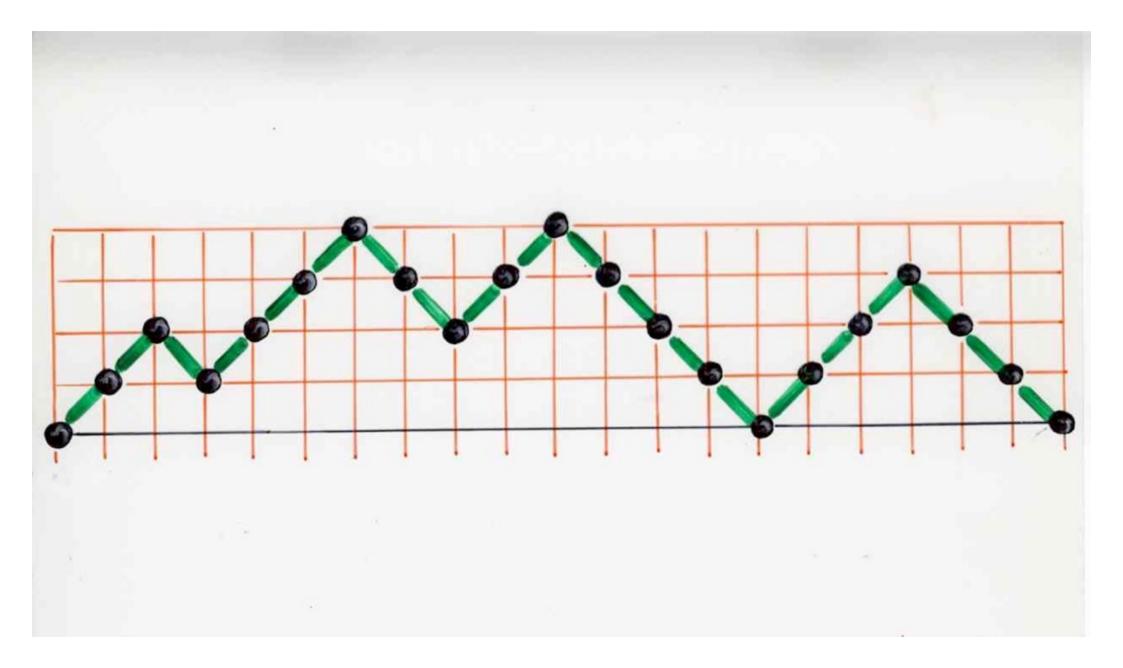
chemins de Dyck

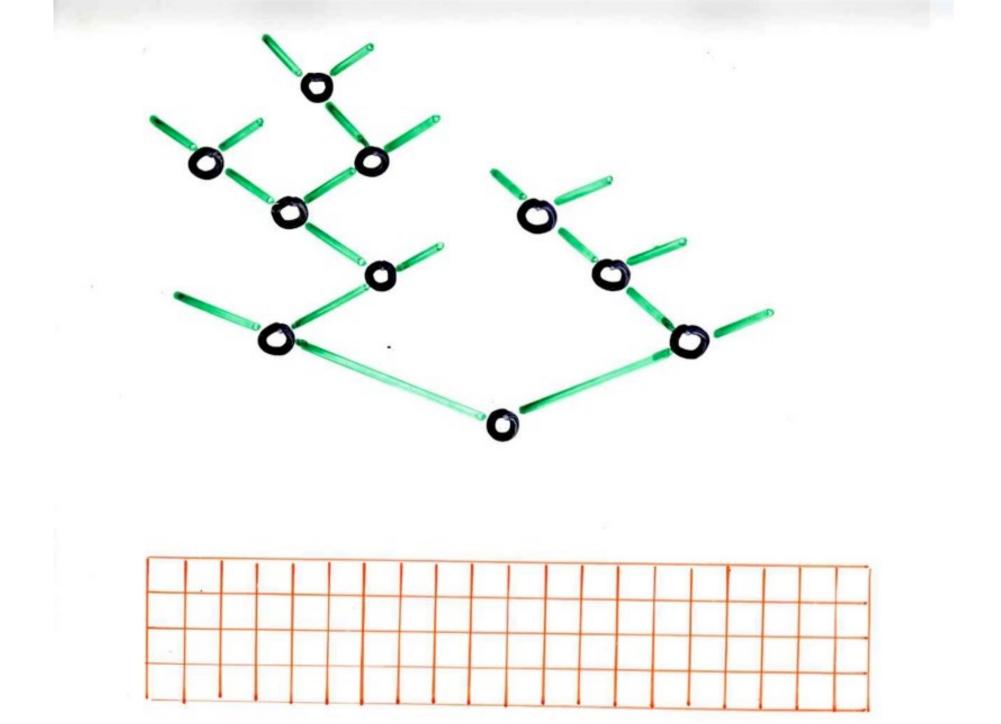


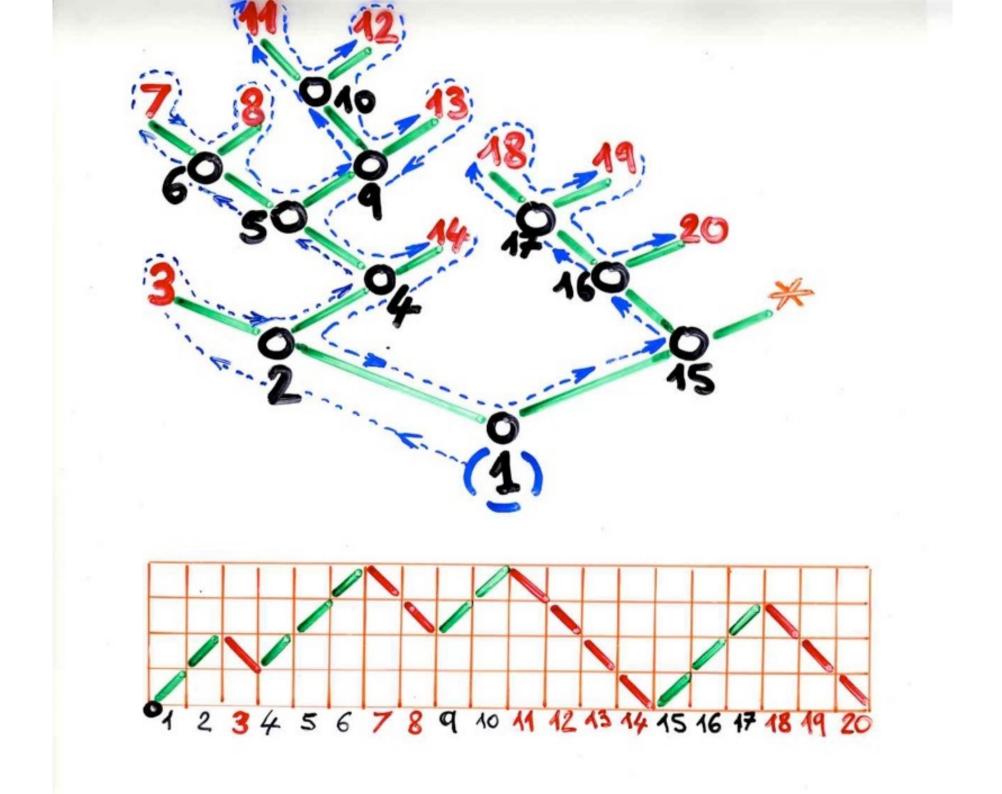




from binary trees ... to Dyck paths





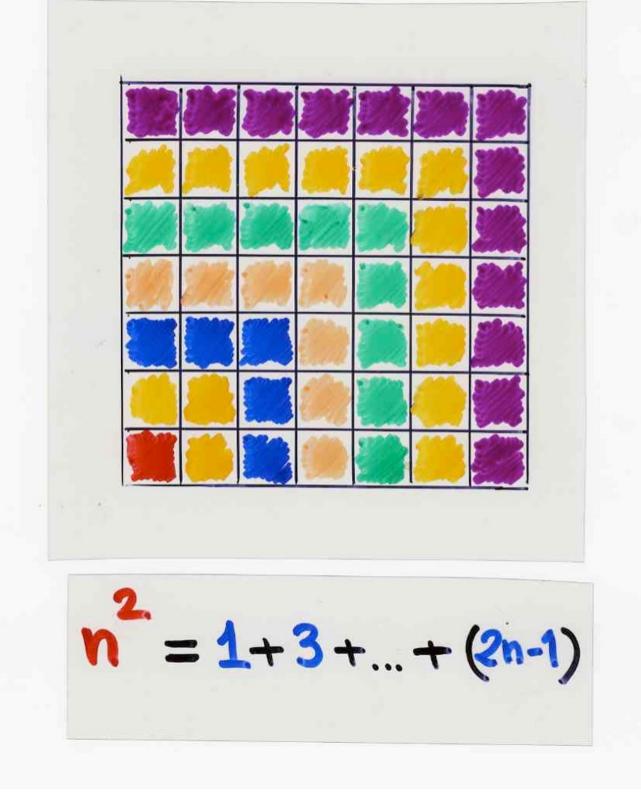


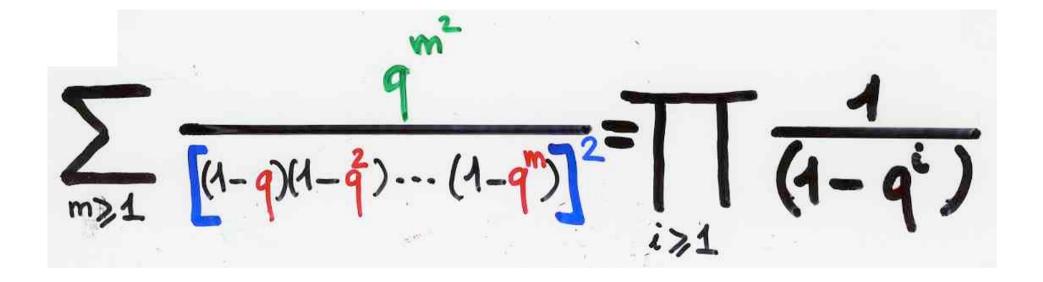
exercíse 4: give a bijective proof of Touchard identity

 $C_{n+1} = \sum_{\substack{0 \le i \le \lfloor \frac{n}{2} \rfloor}} {\binom{n}{2i}} C_i 2^{2n-i}$

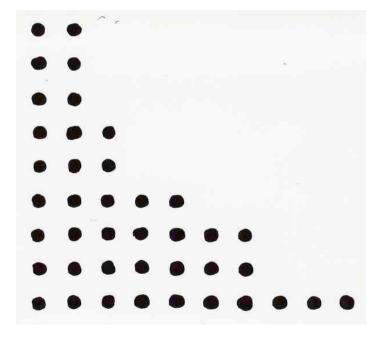
bijective proof of an identity

The "bijective paradigm"

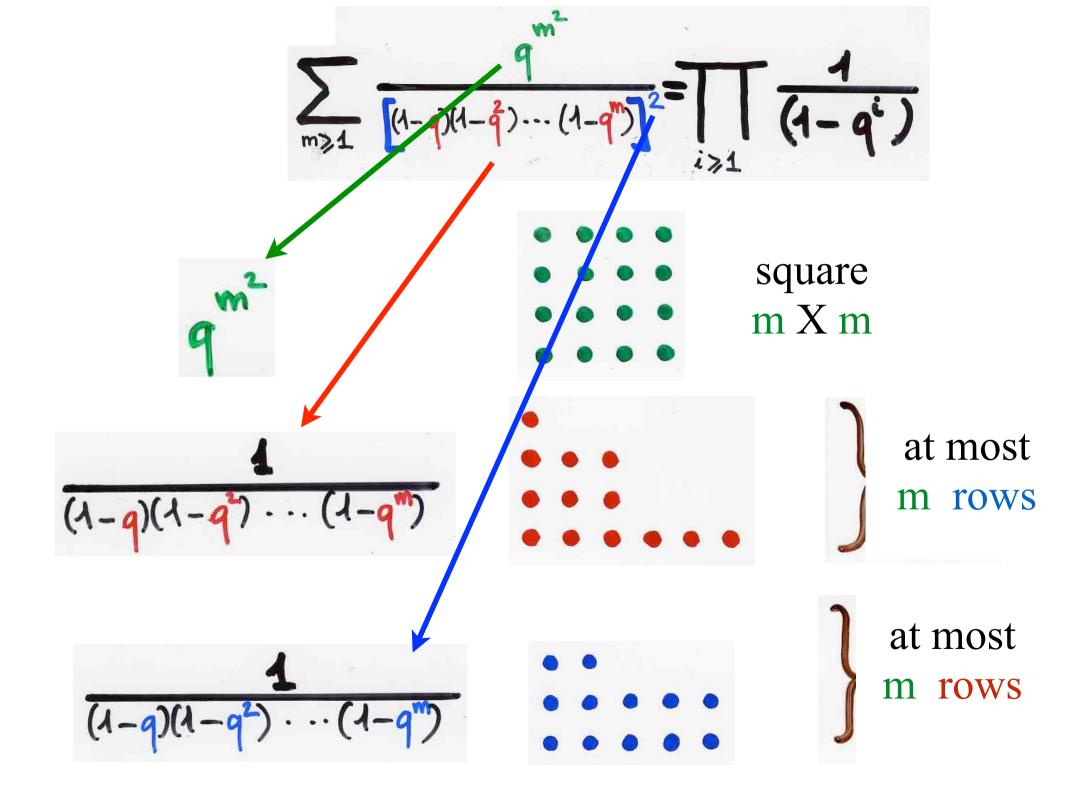


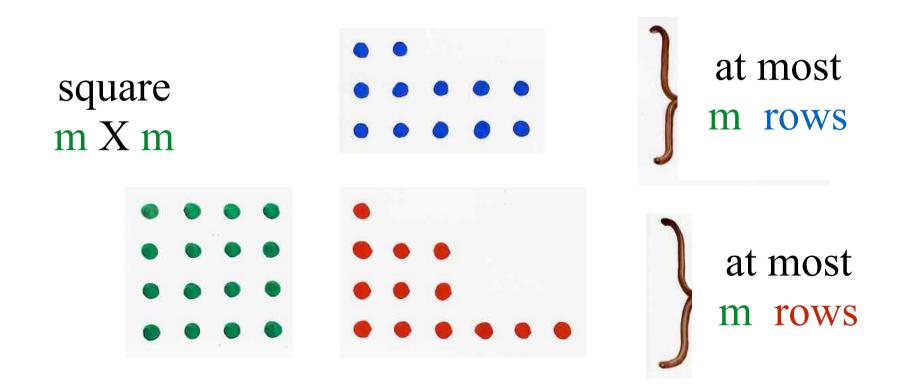


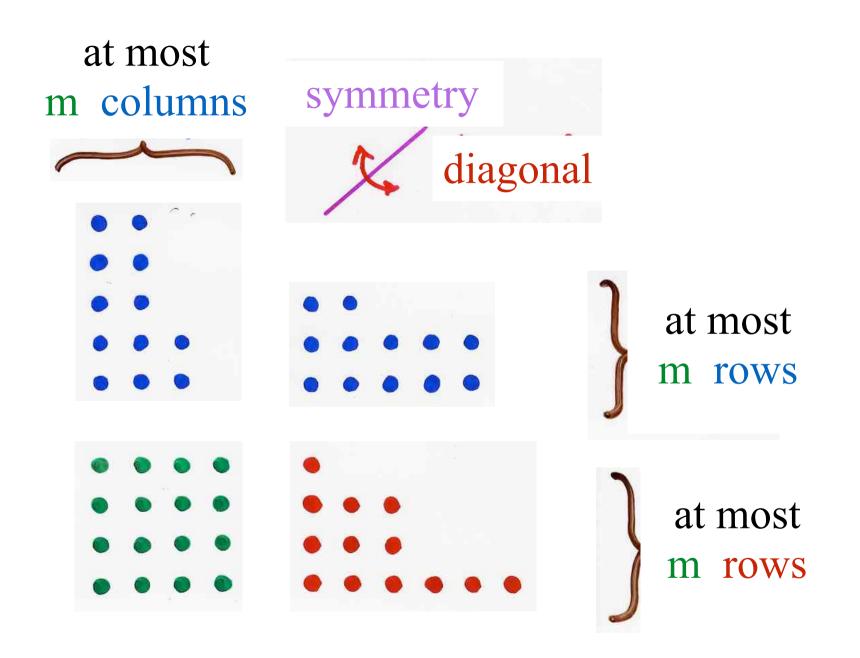
 $\sum_{\substack{m \ge 1}} \frac{q}{[n-q)(1-q^2)\cdots(1-q^n)} = \prod_{\substack{i \ge 1}} \frac{1}{(1-q^i)}$



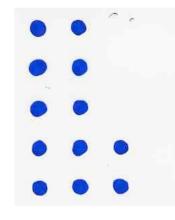
 $= \prod_{i \ge 1} \frac{1}{(1-q^i)}$

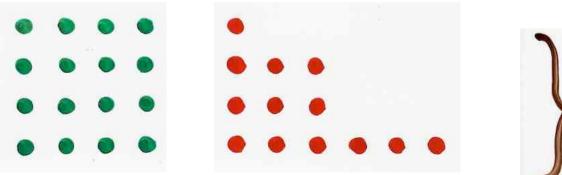


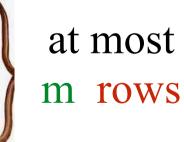


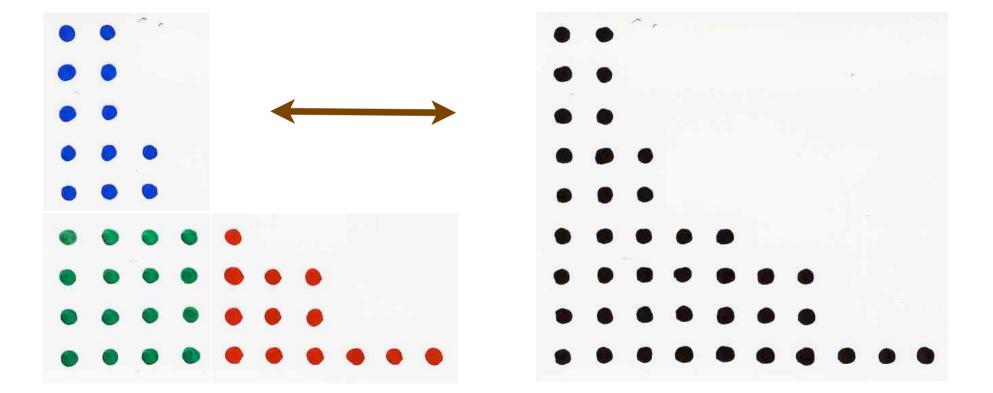


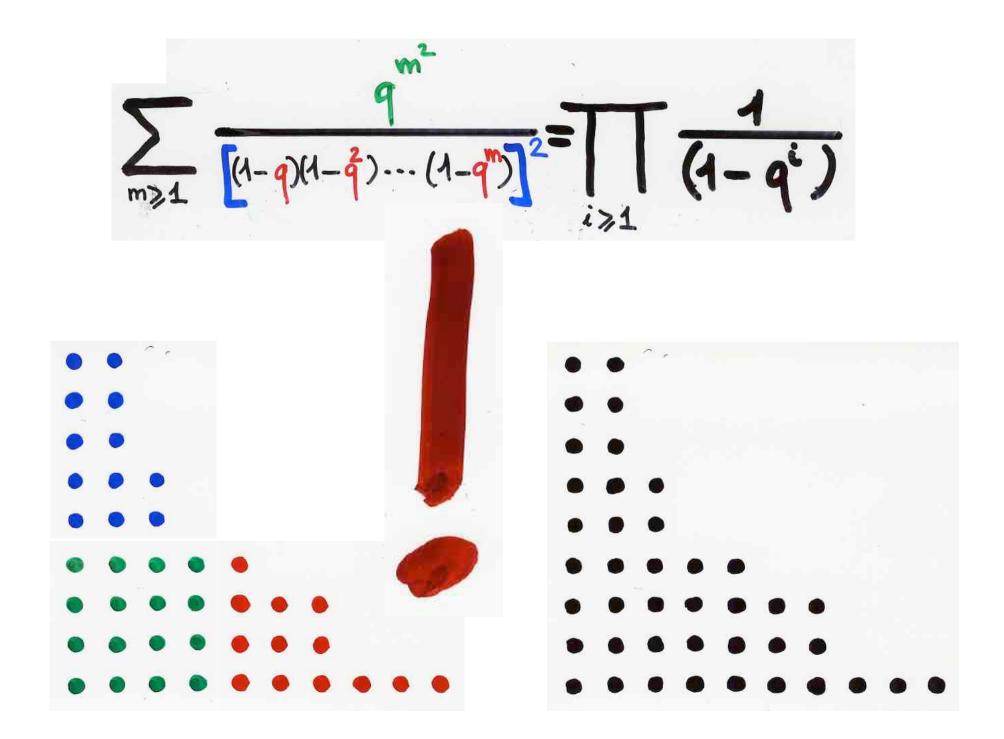
at most m columns





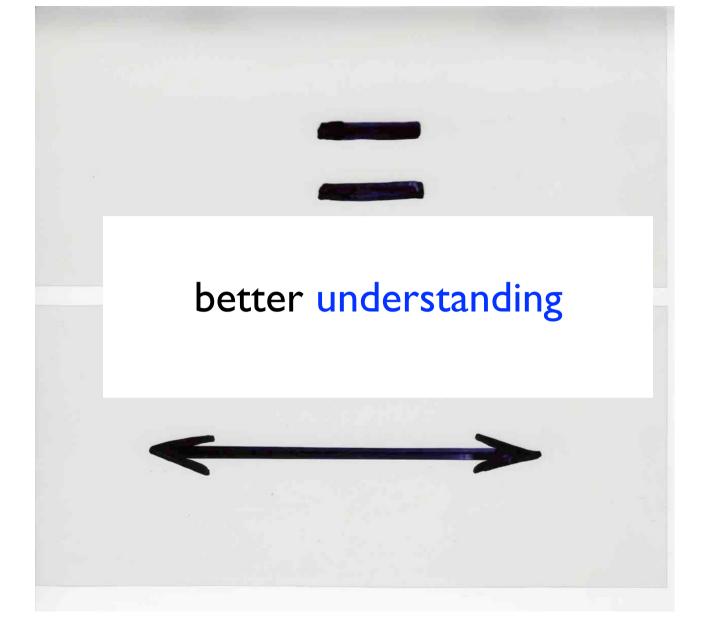






drawing calculus

computing drawings



fonctions spéciales polynômes orthogonaux fonctions elliptiques représentation des groupes fonction symetriqu equations diffementielles approximants de Padé fractions continues utitions dentiers systèmes dynamiques

rational generating functions

Rational generating function $\sum_{n \neq 0} a_n t^n = \frac{N(t)}{D(t)}$ N(t) polynomials in t

Path (or walk)

$$\omega = (\Delta_0, \Delta_1, ..., \Delta_n)$$
 $\Delta c \in S$
 Δ_0 starting, Δ_n ending point
length n
 $(\Delta c_i, \Delta c_{i+1})$ elementary step
valuation (weight)
 $V(\omega) = \prod_{c=1}^{n} V(\Delta_{c_i}, \Delta_c)$
 $v: S \times S \longrightarrow K[\times]$

 $\frac{P_{rop}}{\sum_{i \sim j}} V(\omega) = \frac{N_{ij}}{D}$ $\mathcal{D} = \sum_{\substack{\{1, \dots, V_r\}\\ 2 \in y^2 \text{ disjoint}\\ eyeles}} (-1)^r \mathbf{v}(Y_n) \cdots \mathbf{v}(Y_r)$ $N_{ij} = \sum_{\{\gamma_j \mid \delta_{i_j}, \delta_{i_j}\}} (-1)^r v(\gamma) v(\xi_i) \cdots v(\xi_{i_j})$

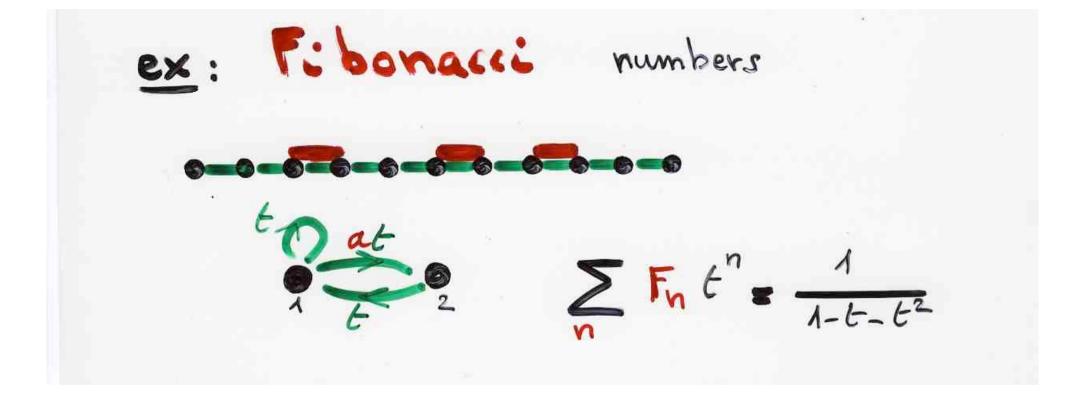
$$\frac{lemma}{V(i,j)} = \begin{cases} 1,2,\ldots,n \end{cases}$$

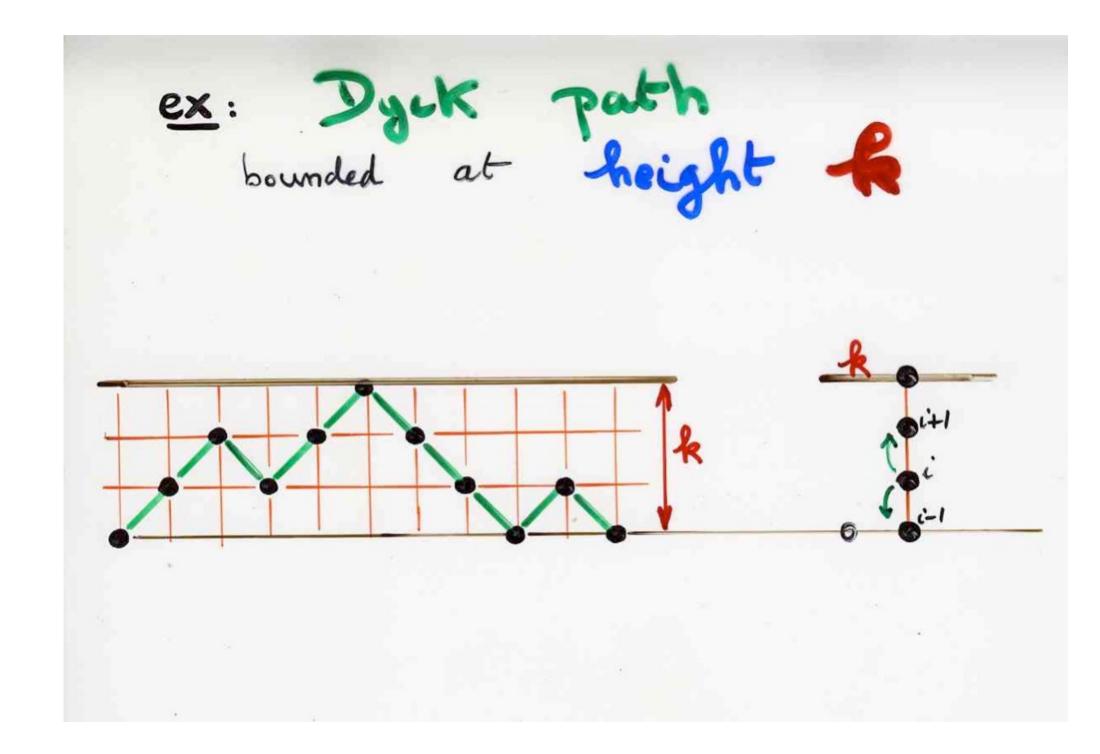
$$V(i,j) = a_{ij} \qquad A = (a_{ij})_{i \le i,j \le n}$$

$$(I - A)_{ij}^{-1} = \sum_{i \le j} V(\omega)$$

$$i = \sum_{i \le j} V(\omega)$$

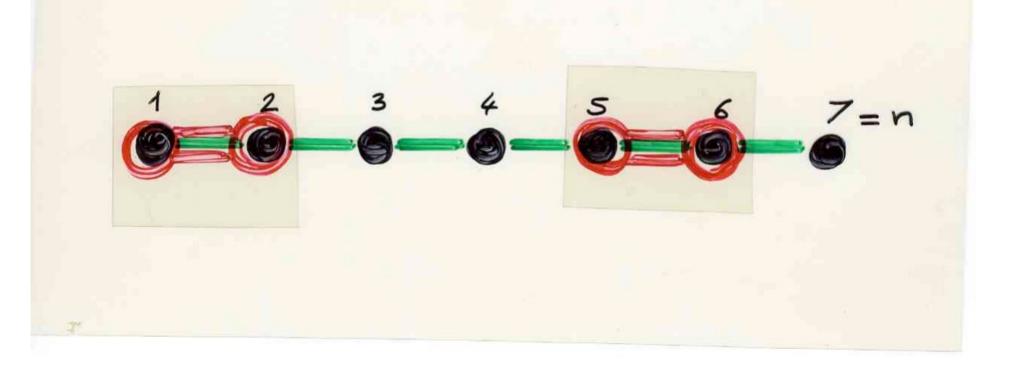
 $\frac{cof_{si}(I_n - A)}{det(I_n - A)}$ $(I_{n} - A) =$ $J_{n} + A + A^{2} +$ $A = (a_{ij})$

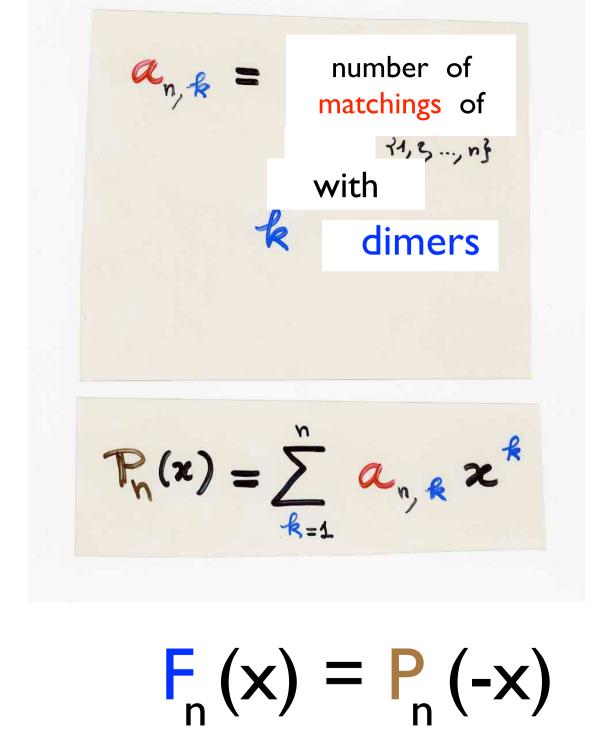




6 w1/2 $F_k(t)$ F(t)as Dyck paths bounded & A= (a;)

matching of the "segment" graph





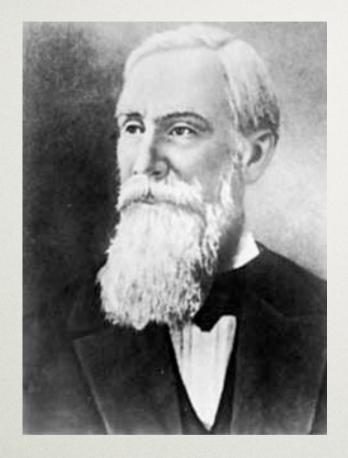
Fibonacci polynomial

1 2 3 4 - -- + - - $+ t^{2}$ 2 $F_4(t) = 4 - 3t + t^2$

Filonacci polynomials Fo = FA = 1 $\mathbf{F}_{n} = \mathbf{F}_{n-1} - \mathbf{C}\mathbf{F}_{n-2}$ - t 1-25 $1 - 3t + t^2$

ank = number of matchings of 71, 3 ..., ng with dimers $a_{n,k} = \begin{pmatrix} n-k \\ k \end{pmatrix}$

exercise



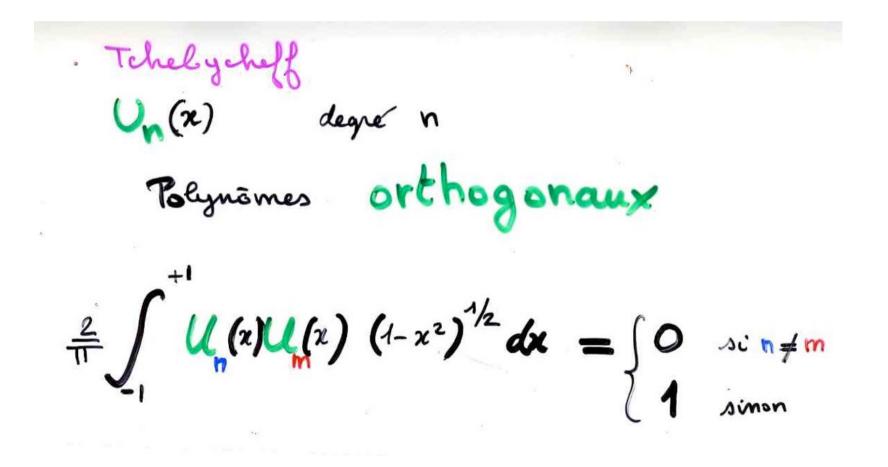
Tchebycheff polynomials

 $Sin((n+1)\theta) = sin \theta U_n(cos \theta)$ $U_n(x) = F_n(2x)$ $F_{n}(x) = \sum_{k=1}^{n} (-1)^{k} a_{n,k} x^{n-2k}$

 $Sin((n+1)\theta) = sin \theta U_n(cos \theta)$

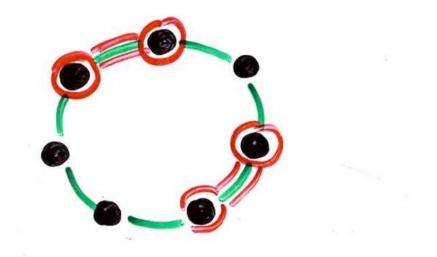
- X - 2 $F_3(x) = x^3 - 2x$ $sin(40) = sin \theta \left[8 \cos^3 \theta - 4 \cos \theta \right]$

complements:



complements:

 $cos(n\theta) = T_n(cos\theta)$



binary trees generating power series power series algebra operations on combinatorial objects formalisation example: integers partitions bijective combinatorics

from binary trees ... to Dyck paths

rational generating power series The "bijective paradigm"