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Abstract. - Greene's Theorem relating chain and antichain families with
maximal cardinalities in a poset (partially ordered set) was motivated
by the Robinson-5chensted correspendence, This correspondence is a
bijection between permutations and pairs (P,Q)} of standard Young
tableaux having the same shape.

This bijection originated in the representaticn theory of the sym-
metric group. The underlying combinatorics is very deep and also takes
roots in the theory of symmetric functions and algebraic geometry.

The purpose of this talk is threefold. First we give a brief sum-
mary of the principal combinatorial properties of the Robinson-Schensted
correspondence, especially those having an order-theoretical flavor.
Second we shed some light on its relationship with poset theory and
Greene's Theorem.

The third purpose of this talk is to solve the fellowing open pro-
blem : give an interpretation of the value located in the ({i,j) cell of
the Young tableaux P, and Q . This "local' characterization of the
correspondence is completely symmetric in rows and columns and ra-
quires the concept of grids and &xtendable grids.

These last results can be extended to arbitrary posets. Complete
proofs will be given elsewhere.

Résumeé. - Le théorime de Greene sur les cardinaux maxirnaux des fa-
milles de chafnes et d'antichaines extraites d'un ensemble (partiellernent)
ordonné a son origine dans la correspondance de Robingon-Schensted.
Cette correspondance est une bijection entre les permutations et les
paires (P,Q) de tableaux standards de Young de m&me forme,

Cette bijection provient en fait de la théorie des repré&sentations
du groupe symétrique. La combinatoire sous-jacente est fort riche et
prend également racine dans la théorie des fonctions symétriques et en
géométrie algébrique.

Le but de cet exposé est triple. D'abord nous donnons un bref
apercu des propriétés combinatoires les plus classiques de cette corres-
pondance, notamment celles en relation avec la méthodologie des ensem-
bles ordonnés. Le deuxizme but de cet exposé est de faire sentir 3 un
public motivé par les ensembles ordonnés l'inté rét de mieux connaftre



410 . Viennot

cette merveilleuse correspondance.

Enfin une troisidme partie cst consacrée 3 la résolution d'un pro-
bleme ouvert : donner une interprétation symétrique en lignes et co-
lonnes de la valeur située dans la case (i,j} des tableaux de Young
P et Q. Cette définition "locale" de la correspondance de Rebinson-
Schensted utilise les nouveaux concepts de grille et de grille prolon-
peable.

Ces dernitres idées peuvent Stre étendues aux ensembles or-
donnés quelcongues. Les preuves complites de cos nouveaux résultats
seront données ailleurs,

£1 - Introduction.

In 1938, G. de BE. Robinson introduced Z??j 4 corrcsoondence hetween
the n! permutations of the symmetric group 5n and pairs of certain combi-
natorial objects called standard Young tableaux. This correspondence gives in

fact a bijective [constructive) proof of the following identity

(1) nz:sz,
A

where the summation extends over all irreducible represcntations (over the field
of complex numbers) of the symmetric group En and [ denotes the degree
A

of the correspanding represcatation.

This identity 15 classical in the representation theory of finite groups,

where the left hand-side is the order of the group.

In the case of the symmetric group En » zach of the irreducible repre-
sentations is in bijection with a very simple combinatorial object : a2 partition of

the integer n . Such a partition is visualized as a Perrers diagram (see figure 2

below) with n cells. In a seriés of papers {scc the collected papers 1187} ,
Young introduced his farmnous tableaux as a combinatorial tool in the study of the
representations of the symmetric group. These so-called Young tableaux are la-
belings of the Ferrers diagrams with integers such that the numbers are increa-

sing in rows and columns (see definition below),

The dimension fk is in fact the number of standard Young tableaux
associated with a given partition % . The right-hand side of (1) is interpretated

as the number of pairs of standard Yeung tableaux having the same shape (i.e,

Ferrers diagram).

The problem ta find f}\ becomes a purely combinatorial problem, and
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s in fact a posct problem : find the number of linear extensions of the poset
defined by the cells of the Ferrers diagraim.

Combinatorics of Young tableaux appears also in many other areas,
as for example the theary of symmetric functions (Schur functions, ...)J, inva-
riant theory or algebrale geometry (Schubert calculus, flag manifolds, ...). The
interested reader will see the books [72], [80:, the survey paper [?] and soms
recent work of Lascoux and Schitzenberger. We shall restrict ourself to the
combinatorial point of view,

The correspondence intreoduced by Robinson was rediscovered by
Schengted [89: and defined more clearly in purely combinatorial way by a recur-
sive algorithm ! the "bumping process' . Since then, this correspondence has
been known as the Robinson-Schensted correspondence and appears also to be of
purely combinatorial interest, Following Schiitzenberger, much combinatorial
work has been done. A good survey of the state of the art in 1972 can be found
in Knuth's book :52: , section 5.1.4, and more recently in the book [13] edited
by D, Foata and related to the Strasbourg 'table ronde' in April 1976.

The Robinson-Schensted correspondence 7 = (P{g), Q(5)) has strong
links with poset theory, With every permutation <, one can associate a poset
having dimensicon = 2 , and conversely any such poset can be obtained in this
way. Increasing subsequences correspond to chains and decreasing subsequences
correspond to antichains. Some combinatorial properties of the correspondence
are in fact properties of this poset, For example the well-known Schensted pro-
perty gives the length of the longest increasing (resp. decreasing) subsequence
as the number of elements of the first row (resp. cotumn) of the Ferrers dia-
gram common te  P(r] and Q7). A generalization has been given by Greene
[35], interpretating the entire shape (Ferrers diagram) of P{7}) and Q(g)
in terms of a family of chains and antichaing with maximum cardinalities.

This was the starting point for the deep and now classical Greene's
Theorem ;3?} : the duality between family of c¢hains and antichains coming from
the Robinson-Schensted correspondence (posets with dimension € 2) is valid
for any paset.

From a poset point of view, it may be fruitful to have a good under-
standing of the order-theoretical properties of the Robinson-Schensted corres-
pondence (this can be already very difficult) and then to look for possible exten-

sions to arbitrary posects. In particular seme generalizations of the correspon-
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dence have been proposed for arbitrary posets by Fomnin [16] and Gansner [2.7] :

Greene's proof of his theorem relies on some joint work with Kleitman
(39] generalizing the well-known Dilworth's Theorem. This work is part of the
so-called Yextremmal properties” and a survey of this field can be found in West
[113] . Since the papers of Greene and Kleitman, extensive research has been done
and several other proofs have been given {see below). In particular, Creene's
Theorem can also be deduced from integer programming techniques, using the
minimal cost flow algorithm of Ford and Fulkerson [2.3] ,[—1?] - For a survey of
the use of linear programming ideas in poset theory, see Hoffman [45] .

This paper is arranged in the following way  First in section 2, we re-
¢all Greene's Theorem (far arbitrary posets). Then we give different versions
of the Robinson-Schensted correspondepce : the original definition of Schensted
in section 3, a "planarization" given by Viennot DOQ]i_n section 5, then the syn-
thesis made by Schiltzenberger and Lascoux with the “jeu de taquin' and culmi-
nating in the plactic menoid [62] ,[97] in section 6. Some classical combinatorial
properties of the correspondence are given in section 4, In section 7 we intro-
duce the new concepts of grids and extendable grids. We are thus able to give
an interpretation of the shape of the Young tableaux P(z) and Qf{g) that is
completely symmetri¢ in rows and columns. Moreover, we Eive an explicit min-
max formula for the value Pij(c) {resp. Qijfo)] logated in the (i, j) cell
of Pi{o} ({resp. Q(z)). In section 8 we extend these ideas to arbitrary posets,
This extension relies on some theorems of Frank [23] . proved by linear pro-
gramming techniques, from which Greene's Theorem can be deduced. An open
problem is to prove directly the results of section 8 without the use of linear
programming.

In this paper, we do not pretend to give an exhaustive survey of thia
huge subject and apologize for amissions and unguoted papers,

Also we confess that we chose some of the most spectacular properties
related to the high use of transparencies in the talk. Unfortunately, the simpli-
city of the combinatorial constructions, together with the magic of this very
beautiful correspondence, cannot be writtern down in a paper as easily as it can
be described in an oral communication with 2 friend or using superposition of
pictures with transparencies. This is the rule in combinatorics, Nevertheless,
we hope that the reader, not having attented the talk corresponding to this paper,
will agree with Knuth's statement ([52}, page 60,line 21) : "The unusual nature
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of these coincidences might lead us to suspect that some sort of witcheraft is

operating behind the scenes ! .

£ 2 - Greene's Theorem,

Let P be a finite poget (partially ordered set). An antichain is a
subset of pairwise incomparable elements of P . A chain is a subset that is to-
tally ordered by the induced order of P . A chain k-family (resp. antichain
k-family) is & subset of P that is the union of k chains {(resp. k anti-
chains). We denote by < (P) (resp. dk(P” the maximum cardinality of

k
chain families (resp. antichain families) of the poset P

Example : Let P be the poset defined by the diagram displayed in figure 1.
The. vertices are 1,2,.,.,9 . For the reader unfamiliar with poset theory, we
recall that the (partial) order relation = of P is defined as to be the transi-
tive closure of the following relation : xRy iff and edge links x and y and

x 15 below vy .

“a e &
ge @® 3
®
3
78 ® 2

¢
6 %

Figure 1 : A poset.
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For k-=1,2,3 the following subsets are chain k-families with maximum car-

dinality
I vlzil,a,s,s,gl
k=2, yz:E1.2,3,4.6,?,8,q}
k=3, Y3=P={1, 21

The subset V2 is a union of two chains, YZ ={1,2,3, 4}y [6, 7,8.9]), while

3 is a union of three chains Yy = (1,2,3,43 J(5}ufs,7,8,9). Thus e
2 P)=9 .
cz(P) 8, 03{ ) =¢

¥ (P)=5,
1

Note that, in this particular example, there exists only one chain
k-family with maximum cardinality, for k=1,2,3 .

For k=1,2,3,4,5, the following subsets are antichain k-families

with maximurn cardinality.

=i, b, =£3,5,7] ,

k=2, t,= (L6l U357},

k=13, 53:[1,6}u{3,5,71u{4.3}.

s, 64={1,6}L,fZ,?}U{'S,S}UH.Q}.

k=5, s, =P={Leluf2 7 u{38}u{s9}u{s].

We have written each 6k as a union of k antichains,
Thus dl(P} =3 4 dZ(P} = 8, dB{P) = Py d4{P} =8, dEEP} =9,
Here, foreach k, 1® k<4 ,6 there exists several distinct antichain k-families

with maximum cardinality dk(P) :

In the literature, chain k-families are often called k-cofamilies,
antichain k-families are also called k-families, while antichain k-families with

maximum cardinality dk(P] are called Sperner k-families. The notation

dk(P} is in honor of Dilworth (Saks calls this the kth Dilworth number).

Usually ck{P) is denoted by ak(P] . We have changed this notation because
throughout the paper, ck(P} is associated with the "shape” L\ of the Young
tableaux obtained by the Robinson-Schensted correspondence, while dk(P) is

= *
associated with the "conjugate shape', usually denoted by % or X

A partition of an integer n is a non-increasing sequence of non zero
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1
% is visualized by a "Ferrers diagram' F {see figure 2, in "French notation').

integers 3.1‘2 K23 ?kp?ﬁ such that n = X +.,‘+3Lp . Usually a partition

th
The number of slements in the 1 row is ?l.i L If 7\.?' denotes the number of
th , g
elements in the j column, we obtain another partition X = ()\1'3 SR Y,

called the conjugate partition of % . We have denoted by ¢q the number of ele-

ments of the first row of P,

With these definitions we can state the well-known Greesne's Theoretn

as follows

THEOREM . (Greene} Let P be a finite poset with n elements, q
{resp. p} the length of the largest chain {resp, antichain). We define the num-
bers Ri{P) = ci(P) s ci_l(l:') and ui{P) = di(P) = di_l(Pj {with the convention
CO{P] = dO(P)'T 0 ]. Then we have the following properties

(i) aliP)a R xP(P} ,
(ii} uI(P); Le2u (PY,
q

(iii} the partitions defined by (i) and (ii) are conjugate.

The Ferrers diagram associated with the partition defined by (i) will

Le called the Greene diagram of P and dencted by G{P]} .

Example : The Greene diagram associated with the poset defined by figure 1
is displayed in figure 2.

A= (5,3,1}

= 3,221

Figure Z. The Ferrers diagram of & = (5, 3,1).
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Note that relations (i) and {ii} of Greene's Theorem are not at all
obvious. In particular, a chain k-family (resp. antichain k-family) with maximum
cardinality is not necessarily obtained by adding a chain {resp. antichain) (ram a
chain (k-1}-family (resp. antichain (k-1)-family) with maximum cardinality, The
poset of figure 1 has a unique chain of length 5 and & unigque chain Z-family of

cardinality 8 which is a unien of two chains of length 4.

Originally, Greene proves his rernarkable thecorem [3?] by using soms
work done with Kleitiman r393 that extends Lthe classical Dilworth's Theorem [11?,
which states that the size dl(PJ of the largest antichain in the poset P is the
minimum aumber of chains which cover P . Given any chain partition C of

P, let :mk{C} = I minfk,c) . Since each chain contributes at most k als-
cEC

ments to a k-family, dk(P} & m, (C) . If equality holds then C is called a

k
k-saturated partition. Greene and Kleitrnan proved that for any Lk there exists
a chain partition ©C that is both k and (k+l)-saturated. This faect is known
as the t-phenomenon, and implies condition {ii} of theorem 1.

Since then, many other proofs have been given : Saks considered anti-
chain k-families in 2 product of two posets [86],[88] and gave a short proof of
the existence of k-saturated partitions [Bﬂ. The tools of linear algebra can be

used : Saks ﬁ86] and Gansner [Z?J proved that the numbers ¢ (P) can be consi-

k
dered as the invariants of a nilpotent matrix, that is the block sizes of its Jordan
canonical form ; thus they proved condition (i) of theerem 1. Dual interpretations
exist for the numbers dk(P) . Another kind of proof comes from linear program-
ming using the minimal cost flow algorithm of Ford and Fulkerson : Hoffman and

Schwartz T47), Fomin (16], Frank [23], see also Hoffman's survey paper on the

use of linear programming in poset theory [45].

§ 3 - The Robinson-Schensted algorithm,

In the case of a poset of dimension 2, there is a very convenient way of
computing the Greene diagram : just apply the Robinson-Schensted algorithrm.

We denote by [n] the set {1,2,...,n} and by En the symmetric
group on [n] . For every permutation ¢ of En we associate a poset Pos{o)
to be the set of points & = [(i,0(i)),i€[n] } = [n] x [n] ordered by the induced

arder of the usual product erder :
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(2] fx, )& {x',v') Hf x®x' and y=y'.

Every poset of dimension & 2  is a subposct of the product of two chains, and

can in fact be identified with a poset 0 for a certaln perrmutation 7

Let X be a partitionof n  and FX the associated Ferrers dia-
gram. A Young tableau of shape 3% is a labeling of the cells of Fl with inte-
gers such that these numbers are strictly increasing in the colurmns (down-up in
the "French notation'') and are weakly increasing in the rows (left to right). 1f

the entries of the Young tablesu are distinct intogers and are the integers

1,2, ....n, then we have a standard Young tablean on  [n] (see figure 3). Tn

other words, a standard Young tableau is an embedding in the chain :n? of the
poset associated with F;. (where the order is the induced order of the product

order}.

~2
-
3 v
i
[ |
(]

—
~a
[
ol
=t
—
£T=
v
Pl

Figure 3. A Young tableau, and a standard Young tableau on [9:]
with shape A = (5,3,1}.

We define now recursively a process that inserts an integer x ina
Young tableanw T . We suppose that the entries of T are all distinct and dis-
tinct from x . The result is a Young tableay denoted by T, x).

If x 1s greater than every element of the first row of T , then
I(T,x} 1is the Young tableau obtained by adding x at the end of this first row.

If not, then let z be the smallest value of the first rowof T grea-
ter than x . let Tl be the Young tableau obtained by deleting the first row of

T . Then I(T,x} is the tableau obtained from T by replacing z by x
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and by inserting {recursively} the value 2z in the tableau T

The arrangement is a Young tableau at each stage because the repla-
cement of z by x satisfics the required inequalities in its row and column.
Note that the shape of (T,x) is obtained by adding a cell on the border of the

shape of T . An example of this ""bumping process' is given in figure 4,

=5

3] 8]

anloan

I{T,3)

,_
ol
h#)

0[]

Figure 4, The bumping process.

Now if d is a permutation of En » we define two standard Young

tableaux P(7) and Q) by the following.

The tableau P({r) is obtained by successive insertions :
1:6 =g, B = {=7{1}), .‘.,Pn(c:r) = Plz} where, for i=1,...,n-1,

P.lH £ I(Pi,o(1+1)).

The tableau (2} is obtained by constructing a seguence of tableaux

QU: d, .. "Qn: Qf7}) such that, for i=1,,..,n-1, Qi+'| is obtained from Qi
by adding a new cell labeled i+l on the border of the tableau (., in the

same position as the unigque cell that is in the shape of Pi+l but not in the
shape of P1 :

In other words, the tablean Qo) is a coding of the successive

shapes occuring in the sequence of insertions P], iy B
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Example : o= h61 7T 2 58 3 0 4.
||:_ - ___j

P 0 P $ Q
—_ — oy If -
[6.1 [l._l ,I'III [fj_ i
r6— l [ 2‘] ! 3 7L
, | S R
— — 1i2:3.8
1) l 1] R R - ] l
- o2 - ‘
i-_i__jj 1 |3 ! _6
T S l 5[] -
[5T7] 22 BEEHCNE 2]
Tl Mok L3
Me 7 l f2]al . ? _ﬂ
DTEE  bEE ) BIEL . RIAEL
el bomo 0 RIEBITE GERD
e : ]ﬂ i* | R LS :
LElge Bsgy 0 e

L _____ T

Figure 5. The Rohinson-Schensted algorithm.

It is easy to see that this pracess can be reversed and the corres-
pondence g - (P(¢),Q{7)) is a bijection. This is the Robinson-Schensted cor-

respondence, The tableaw Pfg)} is the P-symbol, while Q{c)} 1is the

Q-symbol,

THEGREM 2 - (Robinson-Schensted) The correspondence ¢ » {(P{o}, Q{a}}

defined above is a bijection between the n ! perrautations of En and the
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pairs of standard Young tableaux on i_nj having the same shape,

This correspondence gives a bijective proof of identity (1).

The number f;\ of standard Young tableaux of shape ) can be com-
puted explicitly. Different formulae have been found and have received much
investigations.

Let * = {)._l?.-. ; .:‘-‘:KD} be a partition of n andfor i, l1Si%p
let A% =& —-p-i.

i i
Using complicated algebraic methods {group characters, symmetric

poelynomizals), Young [llB: and Frobeénius [25] independently gave the formula

A combinatorial proof of (3a), using difference methods, was found
by Mac Mahon, in terms of a ""n-candidate ballet problem" :?4: » or egqulvalently
of "lattice permutations' [?3?, page 133.

Another way to prove (3a) is te derive this formula from the determi-
nantal expression

1

(3b} f:n!detiw),

1
{with the convention W: 0 when li—i-.j < 0). See for example
-i4j

Zelevinsky ilZUj . page 92. A very simple "bijective’ proof has been given by
Gessel and Viennot [30} as part of 2 more general work interpretating many
deterrninants of combinatorics as the number of certain non-cressing confipu-

rations of paths (and a bijection between Young tableaux and such confipurations},

The formula {32) can be rearranged into a2 more simple and elegant

-~

form. Let = be a cell of the Ferrers diagram }?\ associated with A . We

define the hook length of x as the number of cells of Fl located above or at

the right of %, including x itself {see figure 6}. Using the fact that, for any

: 4 _tl'l . 1 [

i, 1€1€p, the product of the hook length of the i row is 1..1 vy (?l..l-a\._ ),
j>i

we obtain from (3a) the very well known and classical formula of Frame,

Robinson and Thrall :22]
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; n!
(3c) (hook length formula) [A = T ;
e %
where the product is taken over all hook lengths hx of F:\
iy
| 1
. . ]
B I
L/ S0 121
Hook length h =% of Hook lengths of the Ferrers
the (1,2) ecel1l 0.2 diagram (5,3,1)

Figure 6. llook lengths.

A probabilistic proof of (3b) has been given by Greene, Nijenhuis and
Wilf (41 . Bijective proofs of {3c) have been given by Remmel E?é] and
Zeilberger [119) . In fact, Remmel combined the non-gressing configurations of
paths mentioned above and interpretating (3b), with a bijective derivation of (3a)

and {3¢) from (3b), using the "involution principle" introduced by Garsia and

Milne [29] in their bijective proof of the celebrated Rogers-Ramanujan identity.
Nevertheless, no simple proof of (3¢) is known and no direct combi-

natorial correspondence explains the role of the hook lengths, As for the

Rogers-Ramanujan identities, it is still an open problem to know whether there

exists a "simple" and "matural" bijective derivation of (3c),

Perhaps, the best combinatorial interpretation of the hook length is

due to Grassl and Hillman [31]. The hooks appear naturally in a combinatorial

cerrespondence involving the so-called plane partitions. This subject is very

clese to our topic, but will not be touched in this paper. From Grassl and
Hillman's correspendence, formula (3} can be derived using an asymptotic

argument.

Kreweras [53] gave an extension of formula (3b) to "skew Young
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tableaux" {sec definition in § 6 below). Canfield and Williamson [117] gave an
"operator' flavour for hook lengths. The numbevrs flx are alsec related to the
{weak) Bruhat order (see the end of this paper).

The problem of computing f)\ 1s a particular case of a classical

problem in poset theory, If P is a poset with n elerments, a linear extension

of P (or order-preserving map) is a bijection g @ P »+ n)  such that

p{x)<eoly) if x4Ly (in P ). This is also called topological ordering (or

topological sorting). The integers (x) can be considercd as labels (the labels
are 1,2,...,n andeach number appears once and only once). Sometimes,
such labeling with labels increasing along the chains of P, are also called

"natural labeling''. Such example 12 given in tigure 1.

The Ferrers diagram F can be considered as a lower ideal of

P

INx IN (ordered by the restriction of the product order (2}). The number f is

A

the numher of linear extensions of this poset FJ\ . The preoblem for general
posets is connected with many other considerations (see for example Stanley
[99:!) and is widely open,

Two other kinds of posets are known, giving rise to an analogous for-

mula for the number of linear extensions as a ratio of n | by a product of

numbers playing the rcole of "hook lengths'. One kind is the shifted Ferrers

dizgrams, that is the induced posets obiained by deleting the cells above the
diagonal from Ferrers diagrams (Thrall [108]). Another family of posets is the
family of trees (where the order means "'to be a descendant of" ). It is easy to
prove the analog of formula (3} where the "hook length” is taken as the size of
a subtree {see Knuth [52], exercise 20, section 5.1.4. ). Itis a major problem

to find an other family of posets having a '"hook length” formula {see Sagan [82] )

The correspondence of theorern 2 can easily be generalized to se-
quences with' repetition of letters, that is words. The tableau P is a Young
tableau while the tableau {3 is a standard Young tableau. Knuth gave in [51]
an ultimate generalization where both indices i and values 2(i) can be

repeated,

§ 4 - Some classical properties of the Robinson-Schensted correspondence.

The dihedral group D4 (symunetries of the square} acts on the set

En of permutations ; in other words, perrmutation matrices can he flipped or



Chain end antichain famifies 423

rotated to obtain other permuotation matrices. Te relate this to the Robinson-
Schensted correspondence, it suffices to view a permutation 7 as the obvious
embedding g = [(i,o‘(i))} in the square [n] x inj . The action can be gencrated
by the twe symmetries | T = T {inverse} and 7 - 5% with ¢*= aln). .. a(l)
{mirrer image). To study the action, let us exarmine the effect of the operations
7a5-1 and 27" on the P-symbol and Q-symbol.

Even though the construction of the P and (3-symbol are completely
different, we have the surprisingly simple {and not trivial) property

{(Schitzenherger :91]) :
PROPOSITION 3 - Plo ) = Qlz), Q(c-lj = P(z) .

For the effect of the mirror image we need to define two operations
on standard Young tableaux., The transpose of a standard Young tableau Y is
: ; T
the tableau obtained by reversing rows and columns and is denoted by Y~ . The

sccond vperation, called dual, was intreduced by Schiitzenberger [91] and is

more elaborate,

Let ¥ be a standard Young tableau on [n] . First we define the

trace Tr{Y) to be the longest sequence {xl <,..= X }  defined by the fol-
lowing : X is the value of the (1.1} cell (that is the smallest entry of Y ) ; for
lap<k, if xp is the walue of the cell (i, j) ., then xp_l_l is the smallest

of the two entries located in the cells (i, 7-1} and {i=1,j) . {if one of these
cells is not in the shape of ¥, let ¥y be the value in the cell that is). By
"longest scquence', we mean that the value X, s located in a cell (i, )
such that the cells (i, j+1} =and (itl,j) are not in the shape of Y . Such a
cell of Y will be called a corner cell of the Ferrers diagramof Y .

We define the tableau d{Y) as the tahleau obtained from Y by

replacing each value xp (l€p=<k) of Tr({P} by the value xD+1 » deleting
the cell with value X and keeping invariant all ether values. Obviously, d(P)
is & Young tableau with distinet entries 2,....n ., and shape contained in the

shape of Y .

LEMMA 4 - (Schitzcnberger) Let ¢ be a sequence of distinct integers, and

T be the seguence obtained by deleting the minimum element. Then we have

FPir) = d{P(z2)) .
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Let ¥ 'be a standard Young tableau, We define the tableau YJ by
the following labeling. The cell containing the greatest value %, of Tr(Y) is
relabeled 1. For g, 1= £ <n, the cell which is in dE{Y} , but not in
d'e H(Y) {that is the cell containing the greatest value of Tr(dz{Y}]} , 1s rela-
beled £+1 . The tableau YJ is a labeling of the Ferrers diagrarm underlying
Y with the integers 1, 2Z,...,n such that rows and colummns are strictly de-

creasing. Such a tableau is called a roverse standard Young tableau and is named

the dual of Y . An example is shown in figure 7.

7] . 7]
vy=[23]39 vy = §1,2,4,9)  aw) =[4]09

1356,’3J |23S]6‘8]
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a9 41911 71af1,
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Figure 7, The dual of a standard Young tableau, obtained by
"vidage-remplissage''.

FPROPOSITION 5 - (Schensted, Schiitzenberger). For any permutation o0 of

Y
En ., PET)=P (=), QC{'J*} = (QJ) (9) . where @QF denote the reverse

tableau obtained from Q by replacing each value i by n+l-1 |
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The reader is urged to test this property with the permutation of figure 5
using the construction of figure 7.
By reversing the order, one can define the dual of a reverse standard

Young tableau. The above proposition implies the relation

I
4) for anv standard Young tableau (YJ} - Y
B

In i94], Schitzenberger has extended the construction Y - YJ for arbi-
trary posets. Lel F be a posctand P a linear emhbedding in [n] . As for

L
standard Young tableaux . we can define 'Fr{PL), an increasing sequence of la-

bels called the trace of PL . Using the operator analegous to  d(Y) , it is pos-
sible to define a dual "reverse natural' labelling of PL . A deep result 18 that

relation (4)_is still valid.

Knuth's transpositions,

We study the class of permutations having the sarne P-syrmbol. The number
of such permutations is obviously f}\ where & is the shape of P . We may

agk how to generate all these permutations from one of them, using elementary

transformations. This is done by the so-called Knuth transpositions {Knuth [51] ).

Let TEEn and x=a{i) , y = a9(1+1) be two consecutive elements of 7.
If the value == 3(i-1)] or ==o(i-1) 1s between x and y (thatis x<z<y
or y<z<x), then the transposition of =x and y 1s called a Knuth trans-
position,

The P-symbol is invariant under Knuth's transpesitiens. Cenversely, any

perrmutation T such that P(g) = P{r] can be obtained from oI by a sequence

of Knuth's transpositions,

A permutation is called row canonical {resp. column canonical) if the se-

gquence {1),..5(n}) can be obtained by reading the entries of the P-symbol in
the following way : read each row from left to right with rows ordered top-down
{resp. raad each column top-down with the columns ordered from left ta right).
In cach ¢lass having the same P-symbol there is one and only one canonical per-

mutation.

Example - The permutation 2 =63 5812479 is row canonical, Possible

Knuth's transpositions are the transpositions of censecutive values (6, 3)
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ancd {8,1),

Of course, we can dually define Knuth's trans asit:onsg on the values
¥ P

instead of the positions and keep the Q-symbol invariant.

Grecne's interpretation of the shape.

We come back to the matn motivation of this talk.

PROPOSITION 6 - TFor any permutation o= the Greene diagrarm associated
with the poset Pos(:) (defined in § 2) is the same as the Ferrers diagram of

P(3) and Qiz} obtained by the Robinsen-Schensted correspondeénce .

In the other words, the. number of elements of the first k rows {resp.
columns) is the maximum cardinality of subsequences of 2 which are union of
k 1ncreasing (resp. decreasing) subsequences.

The particular case k-1 is known as Schensted's Theorem 189" and was
the mativation of Schensted's original construction.

Greene proved proposition 6 in [3'5] by showing its invariance under
Enuth's transpositions, and noting that the property is trivial for row canonical
permutations. We shall sce below a direct geometric construction of such subse-
quences (that is, unions of k increasing {decreasing) subsequences with maxi-
mum cardinality), and also a characterization of the shape of the P-symbol

completely syrmmetric with respect to rows and columins.

A nice corollary of Schensted's theorem is a proposition of Erdds and
Szekcres [12] ! any permutation containing more than “2 elements has mono-
tonic subsequence {increasing or decreasing) of length greater than n  (this
proposition is alse a coreollary of Dilworth's Theorem, as applied to posets of
dimension 2). Nete that there exist permutations with n2 elements having no
monotonic subsequences of length greater than n . These permutations are
exactly those having a P-symbol with a gguare n*n  shape.

Many investigations have been made of the number of permutatieons having
a maximum-length incréasing subsequence. No exact formula is known {see [?9“
for exarnple). This problem is squivalent to enumerating standard Young ta-
bleaux having k rows, and is related to problems in algebra (see Regev [?5:]}.
It has been proved by Hammersley [43] that the mean of the length of maximal

increasing subsequence is asymptotically ¢ n”. Logan and Shepp [?1] proved
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c#2 , while Kerov and Vershik [50:' proved ¢ %2 , Thus c=2, as was sug-
gested by Baer and Brock :122] . Also Fredman t2.4: gave an optimal algorithm

in nlogn-nloglegn comparisons to compute this maximal length,

"Line-of -route! and up-down sequence

An important notion in the enumerative theary of permutations is the

up-down sequence of 2 permutation € E'Er - 1t is defined as a word of length n-1
with two letters + , - as follows
(5} ubDiz} = Wy with W = iff  e{i)<o(i-1l) (rise)

= - if gfijao{i+1) {(fall)

The dual noticn of a rise {resp. fall)} is that of advance (resp. retreat) ;
the value x=0{i} is an advance (resp, retreat) if =x+l1=0{j) with i<
{resp. i > j). The up-down sequence of :!-1 vields the advances and retreats
of o

Shiitzenberger showed that the value x is an advance of the permutation
o iff the value =x-1 is located to the South-East of the value x in the Young
tablean P(?} (thatis =x is inthe cell (i.j) and x+l in the cell (i',j")
with  i'=2 1, j'&€ i),

Note that 1f =x+! is not South-East of x, then x+1 1is atthe North-
West (that is 1'% 1, j'2 j}. This succession of South-East or North-West steps
has been called the line of route by Foulkes,

Dually, by taking the inverse G_l of ©¢ as menticned above, the line
of route of Qo) gives the up-down sequence of the permutation (see example

on figure 8},

Example - For o =617258394, UD[@)=-4+_-+4+~--4+ - and

UD(U-1}2+++—-+++.

The lines of route of the FP-symbol and Q-symbol are the following
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E‘l '--.\‘ 71
g‘-‘, 1 7:""*'8 -4-—\\\ i‘%
1—2—=335y | g 1

Figure 8 - Lines of route of the P-symbol and Q-symbol.

Foulkes gave beautiful applications of this interpretation to enumerative
problems of permutations [l‘):' ,[20:' ; fZ].J . Other applications {using also the
duality Y = YJ} can be found in Foata, Schiitzenberger [15],
k-matchings - A major guestion is to give a direct interpretation of the values
inthe P and Q-symbol. Greene gave an interpretation of the set of values
which are above the kth row in the P-symbol. For that purpose, he introduced
the new concept of k-matchings.

A k-matching of a permutation ¢ is an array | of

Gireing , 1654k
integers such that each row is a decreasing subsequence of 0 and the elements
of each column are distinct, The set a

, 8 ig called the source of the

T Fe= 1
k-matching. First, the number of eletnents in tli)e rows above and including the
kth row of Pf{g]} is equal to the maximum size (among k-matchings, k fixed)
of the source of a k-matching of the permutation [38] .

For the second result, we order subsets of [n] by lexicagraphic order,
that is A < B if the smallest element that occurs in only ocne of A and B
appears in A , Greene [38] showed that the set of elements located in the rows
above and including the kth row of P{0) 1is the lexicographically minimum
gsource among the sources of maximum-sized k-rnatchings of the permutation.

Gansner [27] gave proofs of these two facts using tools from linear alge-
bra, and gave an anzlog of the first property for columns, by introducing the

concept of k-scatters of a permutation.

We shall discuss below the extension of this to arbitrary posets.



Chain end antichain families 429
$ 5 - Planarization .

In order to give a simple explanation of propesition 3 {and other properties
such as Greenc's interpretations), Viennot introduced 109] a geometrie version
of the Robinson-Schensted corrcspondence, that is a pictorial description with
"shadows' and "horders of shadows' in the plane.

We consider the poset © = ZxZ ordered by the usual product order (2).
We imagine some light coming from the South-West,

The shadow of a point (i,j) is the set of points (x,y} of Rx«R with
x2 i, y®j . The shadow of a finite subset F of — is the union of the sha-

dows of each point of F . The border of this shadow {in the topological sense)

is a 'zig-zag line

peints which are not in the shadow of another peint of F .

supporicd by the peoints that are "in full light', that is the

A finite subset F of - is said to be a quasi-permutation iff no two

distinct points are on the same vertical or horizontal line. This terminology is

not classigal. Several other names are used, in particular independent set.

When 7 is considered as a poset (direct product) such sets are called

semiantichains. We introduce here the term 'quasi-permutation' because it will

correspond below to a subsequence of a permutation viewed as a sequence, in

which the information about the positions held by the clements is retained.

Let F be a gquasi-permutation of — . We define a sequence

Ll’ .. "Lk of broken lines by the following process : L1 is the berder of the
shadow of F , andfor i, l=1<k, Li+1 is the border of the shadow of the
guasi-pertutation Fi+l obtained by deleting fromm F  the points that are on
the lines Ll’ - Li (see figure 9). The lines Ll’ e ]_.k will be called the

cutstanding of F .,
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Figure 9 - The outstanding lines and the skeleton of the
permutation ¢ =617258 394 ,

In this construction, some remarkable points appear. Following the
outstanding lines of ¥ , one changes direction for each point of F . There is
also a change of dircection for other points that are not in F . The set of these
peints is a quasi-permutation of Zx Z called the skeleton of F  and denoted

8(F) . They are marked with ¢rosses in figure 9.
Note that [S(F)| + k= F!.

Let o be a permmutation of En . We consider the quasi-permutation
a={li,z(i)), i€ [n]} and apply the construction F =+ § (F) as many times as
we need to obtain the empty quasi-perrnutation. We thus construct a sequence

{(¢) = 8(5.(9)), and sp(é)}:ﬁ

o) =§&,... 3 i i<
S (7) =&, ,Sp_l{cr) where for i, 191 p,SiH ;

o
{see figure 10).

An outstanding line of a quasi-permutation F  is formed with finite
segments {joining a point of F with a point of 8(F))} and with two infinite

half-lines, one is vertical and the other is horizontal. This vertical (resp,
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horizontal] half-line has coordinate v{L} (resp. h{L})) with respect with the
x's axis (resp. y's axis).

We are now ready to state the "geometric' version of the Robinson-
Schensted correspondence :
PROPOSITION 7 - (Viennot) Let T be a permmutation of En . The ith TOoW
of the P-symbol P(z) (resp. Q-symbol Q7)) is the sequence h(Ll), i
h(Lki) {resp. v[l..l), - .,v(Lki)} of coordinates of the half-lines composing

the outstanding lines of Si I{G).

7 Cutstandineg
lines of

Points of | ._* -
- 7

[ ] T
X siT)
O 5, {7)

= = S2 (7}

h 7

5 7 8 | 2 4 | 9

1 2 3 \ 4 g \ 1 3 3 & |3 |
F(a) Qla)

Figure 10 - Planarization of the Robinson-Schensted correspondence,
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The permutation © can be reconstructed when knowing, for every 1>l
the coordinates of the half-lines appearing in the outstanding lines of the ith
skeleton Si(a}. This cotnies from the following geometric property.

For a quasi-permutation F, let | and J ©be the projections of F
on the two coordinate axis. The direct product I*J= Z+Z is called the
support of F  and is dencted by Supp(F). A fundamental lemma is that the
map F =+ (Supp(F), S(F)} is an injection from the set of quasi-permutations of
-:n_ xin] into the set of pairs (A,B) where A is a subset of {n]x[n] of
the form TIxJ, and B is a gquasi-permutation included in A . At first sight,
it does not seem obvious to give a construction of F  when (Supp(F), S(F))
is known. Nevertheless, there exists an easy geometric construction (see
Viennot 109},

F isgivenby F=T(S(F)UC), where € 1is a certain subset of ZxZ
(with 2k points if S(F) has k outstanding lines)and T 1is the notation
for an analogous definiticn of the skeleton of a quasi-permutation, but with the
"light" coming from the North-East,

Thus, by repetitive application of this relation, the permutation © ecan
be reconstructed when knowing the (decreasing) sequence of supports of the

different skeletons So(ﬁ), c.+»8_ (0). This sequence is completely defined by

p-1
the coordinates of the half-lines appearing in the outstanding lines of So(ﬁ), S

Sp_l(é}.

The reader is urged te take a rectangular piece of paper, hide the points
of G f{or the permutation displayed on figure 10, then move this piece of paper
from left to right, and look carefully what happens each time a new column of the
[n x[n] grid appears. When passing from column i to i+l , the change of
the outstanding lines crossing the left-hand side of the piece of paper is nothing
but 2 geometric coding of the "bumping process' inserting i+l inthe P-symbol
of the word o(1)..,a(i). A new vertical half-line appears in column i+l . The
corresponding outstanding line belongs to a certain skeleton 5,(0) . The index
£ is a coding of the '"Q-part"” of the Robinson-algorithtn, This is essentially the

proof of proposition 7.

It would be possible to move the piece of paper from the bottom to the top
and thusg described a dual version of the bumping process. In fact this duality is

: ; -1 ; ;
nothing but the transfiormation o =0 , which corresponds to exchanging rows
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and columns in the picture. Vertical coordinates of the half-lines of the out-
standing lines are exchanged with the horizontal cocrdinates. Thus proposition 3
is made crystal clear : the duality 2 =9  corresponds to exchanging the

P. and Q-symbols.

The symmetry 0= 2 [(mirror image) corresponds to making the '"light"
come from the South-East. In fact, there are four different possible directions
for the "'light' and thus four different constructions of sets of outstanding lines
and skeletons. Unfornately, there do not seem to be simple geemetric relations
between these four constructions. In particular, proposition 5 does not seem to
have a simple explanation in this geometric model,

Nevertheless, Greene's Theorem (proposition 6 and k-matching interpre-
tation) can be proved in & constructive geometric way, without changing the per-
mutation to a canonical one with Knuth's transpositions,

The reader will find in [109:[ a geornetric construction of a rmaximal sized
antichain k-family, using an operator, somewhat '"inverse'' {c the operator
F - S(F}, sending every subset of S{F) to a subsetof F according tc some
"light" coming from the North-East.

A k-matching with lexicegraphically minimum tmaximurn-size source can
be abtained in the following way. We start with the set of y-coordinates of the
points of Sk_l(c:r) . Below each of these points, there is a2 unique point of
Sk-Z(c} . The second column of the k-matching will be formed with the y-coor-
dinate of these points, {which are distinct values), Going down from skeleton to
skeleton till reaching pointa of & gives values that can be arranged in a rec-

tangular array having the k-matching property,

Foata's matrix characterization and kernel of the inversion pair graph.

When using transparencies, the different skeletons Si(O') , 120, are
colored black, red, blue, green, ... and everything is clear. Here, we label the
points of Si{c] by the value i+l . All other points of (n]x[n] are labeled 0.
We have a nxn matrix with integer entries. A gquestion is to find a characte-
rization of this matrix. This has been done by Foata in [14} '

We need to define the "hook' joining two points. Let (x.y) and (x'.y')
he two points of ZxZ such that the second is at the South-East of the first
one. The hook joining these two points is the set of points (i, j} with j=y,

x€i€x' or i=x', yRj2Y' (seefigure 11}.
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A matrix with integer entries has the form defined above (coding of the
different skeletons of a permutation = of En } iff it satisfies the three fol-

lowing conditions :
{i) there cxists one and only one 1 in each row and colurnn

(ii) for every entry i*122 , there exists an entry 1 both on the left and

below the entry i+l ,

{iii) for every hook joining two points labeled i ®1, there exists an entry

i+l located on the hook between them.

Such matrices have been introduced by Foata 14] under the name of

Viennot's matrices,

Exarmple -

L R e B s e B i R i Y o B e
Ll w28 e B e B I O R Y i B o
COODoD OO
OO0 oo MNOO
L e B e e B R e B e B e B
DO OO OO0 O
DO DWW O
L o e e o [ e e )
SO, O OoOMNMOD

Firure 11 - a hook joining
two points.

The above characterization can alse be written in a nice way in terms of
graph theory,

Let ¢ be a permutation of en and a ird [n] * :nj its planar represen-
tation, We denote by GI{0) the graph whose vertices are all the points of
[n] X [n} such that there exists a point of £ on the left and below them {that
is the union of all the corners of the hooks joining points of d ). We put an
edge between the vertices (x,y) and (x'.y') iff x=x' and y»y' or
y=v' and =x>»x'. The number of vertices of this graph is the number of
pairs (i,j) such that i<j and 9(i)>¢(j). i.e. the so-called inversions
number of the permutation 7 . Such diagrams have been introduced by Rothe

[81] in order to give a nice (geometric) proof of the fact that the inversion
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number (s invariant under the transform & = :-L ;
In their recent work relating combinatorics (Young tableaux, plactic mo-
notd, Schur functions,...) and algebraic geometry {{lag rmanifolds, ...} 617,
"457, 66, Lascoux and Schitzenberger showed that these "inversion pairs'

graphs play the same role for Schubert functions as Ferrers diagrams for Schur

functions. They called these graphs Riguet diagrams.,

oy
l |
- * c H
Points af €> O 0
| : ; :
i ¥ 00 o - ©
6T (1) : | | i i # :
R R i !
X st ' . * _é)
% il g
I ; o Y
2 : L i .
1 "
2

Figurec 12 - The inversion pairs graph (on Riguet
diagram) of a permutation.

A classical notion in the theory of directed graphs is the kernel of a graph,
that is a set of points such that every vertex of the graph is the source of an
edge ending in the kernel, and every edge having its source in the kernel has its
end not in the kernel (see Berge [5] ). Such a set is unigue if it exists. It is

also the set of "winning positions' of a "Nim game' played on the graph.

From [109:' the skeleton  S(0}  of the permutation ¢ is exactly the

i
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kernel of its inversion pairs graph. Writing this property for all skeletons Si(G)
leads te Foata's characterization.

From Fredman [24] and Viennot ‘-:109:[ the construction of the longest sub-
sequence of 2 permutation 0 needs the construction of the skeleton. Thus,
the construction of the skeleton can be done by an optimal algorithm {for the
worst case in "'on-line' reading) in nlogn-nloglogn comparisons. For more
understanding about these theoretical computer science concepts, see for

example Knuth [52] or Ahe, Hoperoft, Ullman [ .

§ 6 - Plactic monoid.

We have aseen that the Robinson-Schensted correspondence is related to
the representation theory of the symmetriec group. The combinatorics of
Yeung tableaux is also intimately connected with the theory of symmetric func-
tions.

A basgig of symmetriec functions has been introduced by Jacobi [48] as a
quotient of antisymmetric functions (expressed as determinants). Following
Frobenius [25]. Schur [90] discovered their relevance to the representation
theory of the symmetric groups and the general linear groups. These functions

have been called Schur functions {or S-functions) by Littlewcod and Richardson

[70]. Also they are related to some work initiated by Pieri in 1873, followed by
Schubert, Giambelli and others, and which is nowadays named a "cohomology
ring of Grassmann varieties''.

We shall not touch this deep and huge subject. We shall only give the well-
known combinatorial definitien of the Schur functions (see for example

Littlewood [69] ).

Let "A be a partition and Y be a Young tableau of shape % (with

entries strictly increasing in columns and weakly increasing in rows). We de-

L 1
note by m{Y) the monomial xll. v xpp . where i, isthe number of en-

‘tries equal to £ in the tableau Y . The Schur function S)L (xl, st ,xn} is the

sum of all monomials m(Y) extended over all Young tableaux with shape &

and entries taken ameng 1,2, ...,n .

1 - = + + + + + +
Exa.mEe S( ,U(xl,xz,x3] xl Xz szs x3x1 xl X3 xle x3x2 lexeS.
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corresponding to the eight Young tableaux displayed in the following figure.

El 5] [3] E [2] 3] [3] 2]

1|1 22! |131 11] lil 23[ |12‘ 1ﬂ

et

Figure 13 - A Schur function.

Lascoux and Schiitzenberger introduced the plactic monoid as a nop-com-

mutative caleculus, unifying and extending previous properties of the Robinson-
Schensted correspondence and of the theory of symmetric functions [E:ZJ . For
examnple, the rather mysterious, so-called "Littlewood-Richardson rule'
{giving the product of two Schur functions as surn of Schur functions) is made
clear,

The cormbinatorial part of this theory is based on the ”jeu de taquin'',
{62],[97]. This rule for moving labels in diagrams generalizes the operation
¥+ d{Y) made in the construction of the dual YJ of a tableau Y .

We shall cnly pgive here a few hints of this beautiful theory., The interested
reader will see the papers of Lascoux and Schilitzenberger [58] ,[59] ,[60] ,[62] "
[63],(95],097] and of Thomas [103],[104],[105],(106],{107], the extension to

the nilplactic monoid [66] and the survey paper of Cartier at the "Séminaire

Bourbaki [7] . For the classical theory of symmetric functions, see the book of

Macdonald [72] or Stanley [98], Foulkes [18] :

Jeu de taquin.

Let X and J be two partitions such that the Ferrers diagram F  is

contained in Fl . The diagram F?L\ FLJ . the difference of the two Ferrers dia-

grams, is an interval of 7 = ZxZ (ordered by the preduct order (2)).

il

A skew Younpg tableau of shape A\M is a labeling of Fl\ Fu with inte-
gers such that they are weakly increasing in the rows (from left to right) and

strictly increasing in the columns (down-up, in the "French notation™).



438 G Viennot
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el3/2]4 “ = {8,7,5,5,2)
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L'- mesfe 316 6] [ ] corner cell of Pk"

Figure 14 - A skew Young tableau,

The "jeu de taguin'' is described as follows. First we choose one of the
corner cells (defined in § 4} of the Ferrers diagram FIJ . We take the minimum
of the two values that are located at the Warth and East, and move this value
inte the corner cell. This creates a "hole' in the skew Young tableau. In a si-
milar way to the construction of the dual in § 4, we repeat the process antil the
hole has moved to the North-East outside of Fl . In case the two values at the
North or the East of a hole are equal, we move in the hole the value located at
the North (thus preserving the condition to have a skew Young tableau}. Also
note that if the hole is at the "border” of FK , at most one of the North and East
cells is non-empty. We move also thig single value in the hole. The process

terminates when both the North and East cell of the hole are empty (that is in

fact when the hale is & corner cell of Fl ).

The terminology fand the theory !) "jeu de taguin" is due to Schiitzenberger,
The '"jeu de taquin' is a2 game played witha nxn board. Inside the board,
there are nz-l elementary cellse. On each cell is printed a letter. At each step
of the game, one can move one of the nearest cells to the unique empty position.
At each step this empty position takes the place of the cell which has moved. The

rule is to obtain sormne words (or letters in alphabetic order}.
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114 4ls IL446 1 4 1] 4 6 146
3 — 3 — @5l — F3[4 P 4{_5
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Figure 15 - The "jeu de taquin'.

We obtain another skew Young tableauw with shape X'\W', where F?\T
{resp. Fu. ) is obtained firom Fl . f{resp. Fu } by removing a corner cell.
Now, if we repeat the process geing from a tableau Y with shape i\u
to a tableau"with shape *'\ud' until the diagram FLI s empty, we cbtain a
Young tableau, called the "redressé' of the skew Young tableau Y wunder the

successive choices of the "jeu de tagquin', A remarkable fact is the invariance

of the "redressé' under the "jeu de taquin', i.e, the "redressé" is independant

of the successive choices of the corner cells of each diagram Fu . This inva-
riance has been proved by Schiitzenberger [9?] and Thomas [105] (see an idea of i
the proof below), The "redressé"” of the skew Young tableau Y is denoted by
R{Y). We follow again Schitzenberger's terminology ; "redressé" is badly

translated by saying that the South-West border of skew Young tableau Y is no

more a zig-zag line,

For example, the tableau d(Y)} defined in 4 is nothing but R(Y \all}
where Y\ a denotes the {skew) Young tableau obtained by deleting the value

ay in the (1,1} cell from the Young tableau Y .

In the example displayed in figure 16, we have shortened the construction
by giving only the tableaux obtained once the "hole" is outside of the diagram
FR . We have circled the values which move for each choice of the corner cells

of the successive diagrams }FLl i
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6 6
— —= 5|7
Y = 2| 5 |@ el2is 1| 2|5
s |(3) 9 HERE) 38|

4 4 / M le

6| 7 v 6 (D} b @ choice of the
1 @ 7
[

corner cell

0 wvalue moving in
the "jeu de taguin”

Figure 16 - The '"redressd" R{Y) of a skew Young tableau Y .
S 1EUrEe 10 E

L.et ¢ bhe a permutation of '5n + We denote by Y(0) the skew Young
tableau obtained by writting the successive values o(l),...,0(n) from North-
West to South-East {(see figure 17). A fundamental property of the "jeu de taguin’,
and giving another definition of the Robinson-Schensted correspondence is the

following

PROPOSITION 8. (Schiitzenberger} - For any permutation © of € . the

"redressé' of the skew Young tableau Y(9) coding ¢ is identical to the

P-symbol P(o} obtained by the Robinson-Schensted correspondence,

Define a strip to be a diagram Fk\ FL.I. such that the borders of FX and

of

F,  are disjoint and such that Fk\ F, does not contain any square F(

2,2)
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four cells. Such diagrams with n c¢ells are coded by a word of length n-1 on
two letters. There exists a trivial bijection between permutations of Sn and
skew Young tableaux with distinct entries 1,2,...,,n and with a strip shape.
From sguch tableaux, we asscciate a permutation by reading the entries from
North-West to South-East following the strip, Conversely, from a permutation

g we define a skew Young tableau Str{d) having a strip shape and such that
the cell containing a(i+l) 1is consecutive and at the East {resp. South) of the
cell containing of(i) iff o(i) < a{i+l} (resp. o(i) = ali+l)). In other words,

the strip is nothing but a coding of the up-down sequence of the permutation

defined in § 4 .

= Str(m

T =617258394

Figure 17 - The skew Young tableaux Y{0) and
Str{7} coding a permutation o .

Obviously, the tableau Str{(c) can be obtained from Y(o} by applying
the "jeu de taquin', and thus, by Schiltzenbherger's theorems (invariance of the
"redressé" under the "jeu de taguin'' and proposition 8),the "redress&"
R(Str{oc})} is the P-symbol P(2) of the permutation ¢ . The reader will
check thies fundamental fact with figure 16 for the generic permutation appearing

in all the examples of this paper,

The invariance of the "redresse' under the "jeu de taquin"” is proved by
introducing the following functions, based on Greene's interpretation of the sha-
pe of the tableaux P{¢) and Q) ({(we shall assume that the entries are dis-

tinct, the general case can be deduced from that).
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Let Y be a skew Young tableau (with possibly a "hole" inside}. We de-

fine an increasing subsequence of Y to be a sequence of integers xl Ty o

15 in a cell which is at the Socuth-

ﬂxk such that for cvery 1, 1€ 1<k, 2
East of the cell where x, is located. Then, for any integers k and 221,
we defing Gk ;1Y) to be the maximum cardinality of subsets of entries of ¥
that are union.e: of k increasing subsequences with values <4 .

It can be shown that the function Gk,}?l 1s invariant under the elementary
sliding of the 'jeu de taquin'. The fact mentioned above is proved from the re-
mark that a standard Young tableau is characterized by the function Gk,,f-

Then one can show directly that the corrvespondence 7 =+ (R{7) , Rf:'l))

18 a bijection. The "bumping process' can be seen as particular case of the
slidings of the '"jeu de taguin", and thus we have proposition 8. From there,
Greene's interpretation and properties of Knuth's transpesitions can be deduced.
Other properties mentioned in § 4 are also deduced. For example, the property
relating the up-down sequence and the "line of route! 18 easily shown as a pro-
perty invariant under the 'jeu de taquin'. Also, taking the dual of a tablean

corresponds to reversing the '"jeu de taguin", that is reverse the order between

integers and move the entries to the North-East {instead of the South-West).

Products of Young tableaux.

The above combinatorial considerations can be expressed in a more alge-

braic way by introducing the plactic monoid.

Let ¥ and Z be two Young tableaux. Denote by Y-.Z the skew
Young tableau obtained by putting 2 at the South-East of ¥ as shown on
figure 12, The product ef the two Young tableaux Y and Z is defined to be
the "redressd"  R(Y.Z), By the invariance of the ''redressé&" under the "jeu de
taquin", Ithis product is associative. The empty tableau is the identity element.
The set of Young tableaux with enfries in the set of integers A , and with the

product just defined, is the plactic monoid generated by A .
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Zh 3 .
¥ = oo .
21 3
112 o k]
onp JE
¥ed = RiYeZ) =[2] 2|4
(4] : 2]
1L|1f1]2
7 = it ERRAES
1{2] <
Figure I8 - The product of two Young tableaux.
Proposition 8 says nothing but that the P-symbol P{6} is the plactic
product of the n Young tableaux reduced to one cell a(l), o(2)....,2[n} . The

insertion prdcess I{T,x) defined in § 3 is in fact the plactic product of T
with the single-cell =x placed at the South-East,
Another way to define the plactic monoid cornes from Knuth's transposi-

tiohs. Let A be a totally ordered alphabet. Let A¥  be the free monoid ge-

nerated by A, that is the set of words w= Wy e W with letters w, in A
1

and with product the concatenation product : for u-= Be By and v = vy .Vq.

Uv T g up AT We define the plactic congruence = to be the congruence

of A& generated by the relations

for any letters x,yv,72 ©of A suchthat x<e<y oar y<z<x,
(6) xy 2T yxz and zxyzzyx,

for any letters x,y of A s&such that x <y,

Xyxe:-yxx and yXxXy .-oyyx.

In each cquivalence class, there is onc and enly one "tahkleau' ; that is,
a word that can be obtalned by reading a Young tableau row by row, from left
to right in each row, the rows being ordered up-down (this corresponds to the
row-canonical perrnutations defined in § 4). Tt can be shown that the quetient
monoid AT /= 1s isomorphic to the plactic monoid generated by A defined

above,
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§ 7 - Grids.

This section presents a summary of a forthcoming paper of the author [127],
where complete proefs of the new results announced will be given, .I

A word @ with pq distinct letters is called a (p, q)-grid iff there
exists a Young tableau Y with distinct entries and pxq rectangular shape
such that the pg entries of Y are exactly the letters of ¢, and the rows

and ¢olumns of Y are (monotone) subsequences of o ,

It is easily seen that such & tableau Y 18 unique and is in fact the P-

symbol F{7). Also we have the following lemma

LEMMA 9 - Let ¢ be a word with distinct letters (or permutztion). The fol-
lowing conditions are equivaleast
{i} g is a grid,
fii) the shape of P(0) 1is rectangular,
(iii} forany i%=l, the ith column of P{g) is composed of the
y-coordinates of the points of 0 lying on the ith outstanding

line of 4 .

Permutations with rectangular shape for the associated Greene diagram
have many other nice properties. The number of such permutations, with a
fixed pxq rectangle associated Greene diagram, has been considered by

Hiller [44], in terrn of the "Schubert calculus' describing the "cohomology of

the complex grassman manifold',

In this section, we are mostly interested in subgrids of permutations, that
is subsegquences that are grids (see example in figure 19). When a permutation
o is viewed as a poset Pos(g), the concept of subgrids is closely related to

the concept of ""orthoponal families" introduced by Frank [23] in his proof of

Greene's Theorem (see definition § 8 below),

First, we have the following

LEMMA 10 - Let 0O be a perrmutation for which the associated poset Pos(o)
has Greene diagram G{Pos(c)} (shape of P{o)}). For any pxg rectangle

contained in G(Pos{g)), there exists a (p, q)-subgrid of o,
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The proof relies on Greene's interpretation of
antichains k-families of

G(Pos{o}}
Pos(o)

that is & union of

diagram G{Pos(7)}

with chains and
(praposition 6} : first one takes a subsequence
T of o

p chains (increasing subsequences). The Greene

is not necessarily the same as the diagram G (Pos(g)),
obtained from G{Pos(c})

by deleting all rows indexed by
th
ber of elements of the p

i>p, but the num-

row of Ci{Pos{Tt}) is notless than the number of
th

elements of the p row of Gp(pOS{U‘}}A Applying the same reasoning on 7T

with antichains (decreasing subsequences) leads to lemma 10.

As shown in figure 19, the converse of lemma 10 is not true, A major pro-

blem is to give a characterization of subgrids giving exactly the Greene diagram
G{Pos{r)) and thus obtain an interpretation of

G{Pes(g)) symmetric in rows
and columns (i.e. chains and antichains).
9 /ﬂf
L
’ //( “l
| 1 [
7 ’7
1 : \
1 "
6 4 L
T 1 “ \ Greene diagram of
\ \ 1 \ T=617258394
5 Mt "I 1 \
\
\ Y v Vow=61728394 is
q ‘t ' 1 L~ a {2,3)-subgrid of w.
1 ]
3 \ 1 ff/
' \ o
L] 1 //
2 % E* ]
\ L~
'JE/ J
. o}

Figure 19 -

A (2, 4}-subgrid of a permutation
with no corresponding Zx4-rectangle,
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Let O be a permutation of '5n and T bea subgrideof o . We define
the interior of the grid =~ to be the intersection of the four shadows {see § 5)
of T related to the four possible directions of the light : North-West, South-
West, South-East and North-East. In other words, this is also the set of points
{x,y) of IRsIR such that there exists at least one point of 7 in cach of the
four quadrants with origin at (x, ¥).

The interior of a grid is a union of ele rrentary cells having the property

that for every pair of cells on the same vertical (resp. horizontal), all the cells

between them are in this union. Such objects are known in combinatorics as

convex polyominoes (see [9] and the references therein},

@

5 \EREAN
M.

Figure 20 - The interior of a grid.

Let 7 bea (p,qj-subgrid of the permutation © of 6n and
P(=) = ¥ the unique corresponding tableau in the definition of grids. We shall
say that the subgrid T is extendable in o ) iff there exists increasing subse-

quences Oy, ...,0 of 2 and decreasing subsequences 3

5 2l el o

T g
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satisfying the three {ollowing conditions (see figure 21),

th
(1) forany i, 1<i€p, the i row of ¥ is a {increasing} subse-

guence of A, ,
i

th
{ii) forany j, 1%j<q, the j column of Y is a (decreasing)
subsequence of 3
J
{iii} ewvery point of J that is in the interior of = belongs to one of
the subsequences Bys e .r_:p . 81, - ..Bq s

The definition of extendable subgrids is not changed if we require that the sub-

sequences :I.l, ...,ap are pairwise disjeint, and similarly for 8.,...,P

Bpis 2By =

The (2,4)-subgrid displayed in figures 19 and 20 is not extendable. This
comes from the fact that (2,5,8) and (7, 5, 3} are respectively increasing and
decreasing subsequences of o , with the point labeled 5 in the interior of o .
More generally, a point x of the permutation @ is said to be & critical point
for the subgrid v iff there exists entries of the Young tableau Pi{o} such

L R (a1+1,_i ’x’ai,j+1}

is a decreasing subsequence of o . Obviously, such critical point x 1is in the

) is an increasing subsequence and

interior of the {2, 2}-subgrid {of T)

ey

a]."j 3 ai+1,j A ai,_i+I ; ai+1, j41 }, and thus
ig also in the interior of the subgid 7 . Mow one can see that x cannot be
"incorporated' in one of the {monotone) subsequences of o formed with the
rows and columns of the Young tableau Y = P{9}, (see figure 22).

Thus, a subgrid having a critical point is not extendable, Note that the
converse is not true (see figure 23), Note also that the shape (4,2} of the subgrid

of figure 23 is not contained in the Greene diagram.
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points of the subgrid r

roints of o in the
interior of v hut not
not in 7

ather points of the
permitation o

Figure 21 - An extendable

My border of the interior
of the subgrid r

== increasing subsequences
(chains of &)

=== decreasing subsequences
(antichains of )

(3,4)-subgrid.
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Gla} Greene diagram

Figure 22 -~ A critical point

Figure 23 - A non-extendable subgrid
of a subgrid.

having no critical point .

The main result of this section is

PROFPOSITION 1l - Let ¢ be a permutation and P{o} its P-symbol oktained

by the Robinson-Schensted correspondence. The value Pi,(cr) located in the

{i.j) <cell of P{g) is equal to

P {(7) = min {max 1) ,
ij v

where the minimum ig taken over all extendable (i, j)-subgrids Tt of o .
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In other words, if 7 is & permutation in En and x aninteger
l<x%n, there exists a unique pair (i,§) such that x is the rnaximum value
of an extendable (i, j)-subgrid and such that no extendable (i,j}-subgrid can be
extracfed from the subsequence of = obtained by deleting all valuyes 2 x .
Furthermore, this {i,j} is precisely the positien of x in the P_symbel of
g . This kind of "topological' property of points displayed in the plane is a
"local" definition of the Robinson-Schensted corrvespondence (and a fourth one
after the "bumping process” of ¥ 3, the shadows and skeletons of £ 5 and the
"jeu de taquin' and plactic monoid of § 6).

Preposition 1l is trivial in the case of row (or column) canonical permuta-
tions (see ¢ 4). Thus proposition 11 ig proved by showing the invariance of the
min-max guantity under Knuth's transpositicns.

In fact, more can be said. One can introduce analogously "extendahble"
subgrids of skew Young tableanx (with "holes'). There is no more "interior' of
a4 subgrid but an analagous definition is possible from the next section, The cor-

regponding min-max function plays the role of the function introduced

G
k, 4
ind 6. Again one ¢an deduce most of the pPropertiegs of the Robinson-Schensted
cerrespondence {from the invariance of this min-max function under the elemen-
tary slidings of the "jeu de taquin". The proofs arc more complicated, but one

has the satisfaction of keeping the symmetry between rows and columns, that is

between chains and antichains.

§ 8 - Extensions to arbitrary posets,

In conclusion, we discuss {very briefly} possible extension of the Robinson-
Schensted correspondence and of the grid concept to arbitrary posets. This sec-
tion is mainly based on work of Greene [35), Fomin [161. Gansner [27] ,» Frank

[23:‘ and a forthcoming paper of the author [128] .

Let P be a poset of cardinality n . Let @ be alinear extension in
[n:[ ={l,....n}. The problem is to associate a standard Young tahleau Y(P,p)
such that this tableau is P(7) (resp. Q7)) in the case P= Pos{c) with =
permutation of Gn » and ¢ ig the labeling of the vertices of Pos() by the
values o1} (resp. indices i }.

Ag shown by Fomin [16]. a solution comes fraorm Greene's theory (thecoreml

and proposition 6) and the following lemma : if P' is the poset obtained by
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deleting from P the vertex labeled n (maximum value), then G{P') =< GI{P).
Here Gi{P') and G(P) are the Greene's diagrams of P and P as de-
fined in % 2.

Foramy 1iF nl, let Pi be the subposet obtained by taking the vertices
labeled 1, ....7 . The Ferrers diagrarmns ‘-:G{Pi) , 1=i€nl forma chain
under inclusion. We can define a standard Young tableau Y{P,xz) by placing
i in the unique cell of G(BNG(P. |} (for any i€ n), with the convention

G{PO} - @ ). Figure 24 gives an example with the poset P= Poslg) of figure 1,
but with = different from the two natural lalelings giving the P and Q-

symbol of the peneric permutation 7 =61 7258394 .

Very little is known about this correspondence (P,g) 2+ Y . Greenc's pro-
perties abgut k-matching of permutations (sec § 4] have been extended by
Gansncr [27], where he gives also a dual analegue with k-scatters,

Altough we are going to give an extension of proposition 11 to arbitrary
posetls, no sumple algorithm, analogous te the Robinson-Schensted algorithm,

has been found for the construction of YI(P, ).

5 7
® &
8 4
L ] [

6 Ei

[ ]
e — 3
5 2 L2 78]

[ ) ®
3 1
® &

Figure 24 - The correspondence [(P,p}—= Y .
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Let P be a poset, A subset v of P is saidtobea (p,q)-grid iff

¥ <can be partitioned into p chains [ci 1 =5 ... % < . }, 1€i€p, such that
. . srees € . ) is an antichain of P,
Lad P

With this extension of the grid definition, it is easy to see that lemnma 10

forany j,1%j<q, [¢

is still valid for any poset P . But figure 24 gives an example of a (2, 4)-grid
in a poset whose Greene's diagram does not contain a 2x 4 rectangle. As in § 7,
we give a characterization of grids with shape contained in the Greene diagram.

For that, we use the following notian introduced by Frank (23] .

Let {3,1, o ,qp} be a chain family and [Bl, S ,Bq} be an antichain
family of the poset P, with the chains (resp. antichains) supposed pairwise

disjoint. These families are said to be orthogonal iff they satisfy the two

conditions : -
1 P=(Ua U (Us,),
1 j J
{ii) forany i,1%isp and j,lejsqg, aiﬂaj#ﬂ.
It is easy to see that the chain family [o:l, 557 .,-:Lp] {resp. antichain fa-

mily {Bl, i ‘.aq}) has maximum cardinality. Also, the subset Yy = [o;i n Bj ,
l1€i€p, 1€j<q} 1isobviouslya (p,q)-gridof P .

We shall say that a grid v of P is completely extendable iff there

exist orthogonal families of chains E:).l, - .,qp} and antichains fBl. S

and subsets 1= (p]. J=[q] such that

v:{aiﬂaj, i€1, jeI} .

The concept of orthogonal families is essential in Frank's proof of

Greene's Thecrem, Recall that this proof relies on linear programming techniques.

From Frank's proof of Greene's Theorem (see theorem 3 of [23] ), we can

deduce

PROPOSITION 12 - The Greene diagram of the poset P contains a pPxq

rectangle iff there exists a (p, g)-completely extendable gridin F .

Also, using Greene's Theorem and results of Fomin [16], we can deduce

frorm proposition 12.
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PROPOSITION 13 - Let P be a poset, o : P [n] be a natural labeling of
P and Y be the standard Young tableau defined by the above cerrespondence.
The value Y, (P) located in the (i,j) cellof Y 1is equal to
1]
Y. {P) = min (max ¥}
1)
Y
where the minimum is taken over all completely extendable (p,q)-grids. and

max(¥) denotes the greatest label of the vertices of ¥ .

I have not been able to find a direct combinatorial proof of Proposition 12
and 13, not using linear programming techniques.

This propasition can be applied in the case P= Posic] where UG'SH .
It is possible to define the concept of completely extendable grid extracted
from a skew Young tableau, show its invariance under the "jeu de taguin' and
after § 6 make an ultimate synthesis of the Robinson-Schensted correspondence

and the plactic monoid [127} .

Instead of extending the Robinson-Schensted correspondence to arbitrary
posets, one can also look for generalizations invelving other kinds of tableaux
than the Young tableaux used abave, In § 3 we have mentioned the shifted Young
tableaux. An analog of the "bumping process' has been defined by Sagan [83:[,
where he describes a bijection between permutations and pairs of "colored

shifted Young takleaux" having the same shape. This bijection proves the analog

of relation (1) for projective representations of the symmetric group. Gther gene-
ralizations have been made by Zelevinsky [121] to certain kind of diagrams called
pictures, in conneéction with the intertwining number of representations of the

syminetric group, by Stanton and White [101],f115] to rim hook tableaux giving a

cambinatorial proof of the orthogonality of the characters of Gn and "rim hook"
version of the "bumping precess' and of the "jeu de taquin', and by Berele and

Regev [4] to "semi-standard tableaux" in two sets of variables in connection with

the representation theory of the general linear group GL(k,F), Weyl's "Strip"

theorem [114] and the theory of P.1. algebras.

Also we menticned above in § 4 the Grassl-Hillman correspondence, rela-

ted to the theory of plane partitions, a subject that we do not touch here but

closely related to the Robinsen-Schensted carrespondence {see for example

Andrews [l] chapter 11, Mac Mahon [?3].[74} collected papers, chapters 1l and 12,
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Stanley :98]) Gansner [26] showed that this correspendence, when viewed
through the Frobenius correspondence (between reverse plane partitions and
certain pairs of tableaux), is an extension of column insertion, and closelv re-
lated to the "Burge correspondence" [6] ] [1111_ Vo and White showed that

{a slight variation, equivalent to the original, of) the Grassl-Hiliman correspon-
dence is just row insertion in disguise. This correspondence has been extended

to the two other families of posets with hooklengths quoted in § 4 by Sagan [85].

We conclude this paper by mentioning briefly some very recent and inte-
resting work of Edelman and Greene [123], [124] . In 125], Stanley conjectured
that the number of maximal chains in the (weak) Bruhat order of F.‘n is equal
to the number fv of standard Young tableaux having the '"staircase' shape
% = (n-1,n-2,.,,,1). (The weak Bruhat crder on n is the order generated by
the relations o% 8 if 8 is obtained from & by a transposition of adja-
cent increasing elements}. An algebraic proof is given by Stanley :126]. A bi-
jective proof is given by Edelman and Greene, In fact, three bijections are
needed, using Schiitzenberger's operators [94] ,[97] (analogous to the dual
Y - YJ described in § 4), znd the new concept of balanced tableaux. Let * be
a partitionof n and 2 the conjugate partition. A balanced tableau of shape

A is a labeling 1:ij of the cells (i,j} of the Ferrers diagram F.}L with dis-

th
dinct entries 1,2, ...,n , such that the value ti_j i5 the rif larpest ele-
ment of its "hook" H'j , where r_ = l*_ -itl and where H., 1is the multiset
— i 1j ] 1]
[t
M hemy Y I 0y
3
For example, 3|1 is a balanced
6 10
5 7 4 g 9

tableau of shape A ={5,2,2,11.

One of the most surprising fact is that the number of balanced tableaux of
shape X is Il i+ the number of standard Young tableaux of shape X (see
formulae (3a), (3b) and {3c)),

Apain there 1s deep combinatorics behind this relation between tableaux
and chains in the Bruhat order, related to some recent work of Lascoux

and Schiitzenberger [65],[66] about what they called Schubert polyvnomials and
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the nilplactic monoid,

This monoid is defined by a variation of the relation {6}, (mixing plactic
and Coxeter congruences), and corresponds to a modified Robinson-Schensted
insertion algorithm, Stanley's conjecture can also be deduced using the nilplactic

monoid,
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