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Abstract, We introduce the combinatorial notion of heaps of pgisces,
which g¢gives & geometric interpretation of the Cartier-Foata’s commuta-
tion mongid. This theery wunifies and simplifies many other works in

Combinatorics : bijective proofs in matrix algebra (MacMahon Master
theorem, inversion matrix formule, Jacobi identity, Cayley-Hamilton
theoram) , combinatorial theory for general {formal} or thogonal
polynomials, reciprocel of Rogers-Remanujan identities, graph thesory
{matching and chromatic polynomials). Heaps may bring new light on

classical subjects as poset theory. They are related to other fields as
Theoretical Computer Sclence (paraitelism) and Statisticel Physics
{directed animals problem, lattice gas mode!  with hard-care
interactions). Complete proofeg and definitions are given in sections 2,
3,4,5. Other sections give & summary of possible applicatiaons of heaps.

1. Introduction

Following some work of Foata [24] on combinatorial properties
of rearrangements of sequences, Cartier and Foata [9) introduced in
1968 the monoids generatsd by en elphabet A with relations ab = ba, for
all pairs of letters a,b of A such thet {a,b) € C, where C ig 8 fixed
subsaet of A x A. The besic propertiaes of these monoids, especially the
so-called flow monoid and rearrangement monoid, appear nowadays to be a
classical model in combinatorics (sea for example the corresponding
chapters of the books of Lellement {39 or Lothaire [401). These
moncids are sometimes called free partially abelian monoids. For short,
we proposs to call them commutation monoids.

This model has been ugsed to prova combinaterially (i.e. with
Rijections) some classical formuiae of matrix elgebra : the celebreted
MacMahon Master theerem in Cartier-Foata (91, the inversion matrix
formula In Foata [281 =and the Jacobi identity in Foata [27]. More
recent{y, Gesssel [30]1 has shown how to deduce, from the commutation
monocid model, Stenley's relation betwsen chromatic polynomials and
acycltic orientations of graphs. Very recent|y, a8 new active area of
research hasgs grown up in Theoretical Computer Science, using commuta-
tlon monoids as an algebraic and combinaterial model for paralics!ism
problams and <woncurrency &access to data bases, see £10 balow.
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In this paper, we i1ntroduce another model : the notlaon of heaps
of pfeces. This mode| will appear to be adquivalent to the commutation
monoid medel. At the beginning, the reader may have certain doubts
about the interest of presenting this new version of the commutation
monotd with heaps of pieces. These doubts wil|| probably be reinforced
after reading the abstract definitions 2.1,2.4, 2.5 and 2.7 below where
the heaps rmodel seems more complicated than the commutation monoid.

Once the reader has cverpassed these abstract preliminaries,
haaps give & powerful “geometric” wvisualization of the commutaticn
meno ids. Many basic lemmas and bijections become really simple. The
heaps model appesars te be related to other domains, as for example
Statistical Physics, although the relationship with commutation monoids
was not obvieus. Using the heaps model, we have solved combinatorially
some open guestiong &about the directed animals model introduced by
physicists in 1882 (see a survey in Viepnnot [471) .

Now we give with an exagple an ntuvitive introduction to tha
notten of heaps. Suppose we have an 8 x B chesshboard and some dimers.
Each dimer is a piece of wood which can cover two consecutive cells of
the chessboard. Suppose we put the dimers, one by one, on the
chessbosrd. Each time, one choose a "gaographical pesition” for the

next dimer (1.e. two consecutive cells of the chesshoard). Then the
dimer is put wvertically above this posgsition and lowered until it
touches the chesshoard, covering the two cells of the chosen geogra—
phical .position, or until it touches ons {or two) ather dimers
previously pfaced. Flacing the new dimer under cther dimers ie not
gl lowed. tn other words, it must be possible to remove the dimers one
by ane, whithout moving the other dimsrs, as in the game called
"Mikado". What s seen on the chescboard is the visualization of the
mathematical notion of heaps of dimers, (see Fig. 1).

Whan we consider such

heaps of dimers, we thus forget
some informations about the awxact
order ot placements of the
dimers. For exampla, betwean the
Twe dimers @ and ¥ of figure 1,
one canneot ftell which one was
placed first. Nevertheless,
logking this same figure, one can
say that the dimer o was put

before the dimer Bp. In other

words, we define the relation mge

i ff 1t s impogssible to remove

Fig.1. Hesp of dimers the dimer « from the heap

fer equivaience class of & whithout removing the dimar p.
commutation monoid) The relation ¢ is & partial order
relation. A heap wiil be a ppset

(partially order set) satisfying certain axioms relating the order
reletion g , called “"to be above", and another relation called
concurrency relation. Here this relation is defined on the set ot
"geographical positions"” for dimers (there are 2x8x7=112 such
gogitions].Two pogitions &re concurrent iff they have one (or two}

cells In common.
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I1f we take a5 a8alphabet the set A of the 112 possible

“geographical poslitions™ for dimers on the chessboard, a word w of
letters in A is an encoding of the placements of the dimerg of the heap
{remembering the order of placementsy). Forgetting thigs exact order
correspoands  to consider the word w up to the commutations ab = ba

b
where the geographical positions & and b are disjeint {i.e. not in

concurrence). The heap of dimers is exactly the geometric visualization
of the egquivalence class of the word w in the corresponding commutation
monoid.

This paper is the first of a series devoted to the theory of
heaps and its various applicationa. |t contains two parts. in sections
2,3%,4,5 we give the bastg definitions and lemmas of the theory, with
cemplete proofs. Sections 6,7,8,3,10 present & summary of the other
papers [1531,0171,0501,0(51] and related works.

Heaps are defined in §2, together with the heap monoid H(P,¥)
rs!ated_ te & set of basit¢c pieces P equipped with & concurrency
relation,

in 3, we show the equivalence between the heap monoids and the
commutat ion monoids.

In $4, we show that every heap monoid can be realized with a
caoncurrency relation analogous to the onse described above with dimers.
Bagic pieces are subsets of a set, sach of these subsets being equipped
with 8 certain combinatorfal siructure. We also show that avery poset
can be “realized” as & heap of pieces. This section is just a
prel iminary step of & promising arsa of research ! studying posets
theory with the heaps point of view, in particular reatizations of
family of posets as a family of heaps H(P,¥) .

Baszic lemmas asbout heaps generating functions are given In §5:
inversion |amma (tn fact the squivalent of the Mdbius function of the
commutation monoid, defined by Cartier, Foata [91), heaps with given
max|mal preces and the fegarithmic property “log(heap) =pyramid". A
pyramid is a heap having cnly one maximal piece (ag in figure 1).

After the work of Cartier, Foata [89] and Foata [261,[271 giving
combinaterial proof of colessical matrix aigebra theorems. and also
works of Jacksgon [36]1, Straubing [46]1 and simplifications of Zeilberger
[51], we present in Dutucag, Yiennot [18]1 an ultimate step, unifying all
these bijections as simple consequences of a few basic properties of
heaps. A summary is given in §6.

After Flajolet [22], the author has proposed in £471 (survey in
[4B1) a8 combinatorial theory of formal orihogonal polyromials with
weighted paths. Some part of +this thecry can be simpiified and
reipnterpreted wlth hesps of pieces. This is summarized in §87. Closely
related iz a property of Andrews [2] sbeout the "reciprocal” of the
famous Rogers-Ramanujan identities. Andrew’ s interpretation can also be
deduced from heaps basic properties.



324

In §B we give somé relations between heaps and graph theory
chromatic poiynomials and acyclic ortentations of graphs from Gessel
L3013 and @& summary of Desainte-Catherine, Viennot [15] relating heaps
and matching polynomials of graphs. Godsil's tree—|ike paths [31)1 fit
vary wall with the heaps modal.

In %9 we present & brief summary of Yiannot [503,[5%1]1 giving

two epplications of heaps theory in statistical physics the
cambinatorial solution of the directed animal problem and a ¢combina-
torial interpretation of the density of a gas with hard-core

interactions.

In 8§10, we give a flavor of the connecticons with parallfelism
problems in Theoretical Computer Science.

2. Basic terminology for heaps

Let P be a set equipped with a symmetric and a reflextive binary
relation € (1.e. 8¥b es ¥4 and a¥a for every a,b € P). The slements of
P are called basic pieces. The relation € is called the concurrency
refation.

Definition 2.1. A [labeled heap with pieces in P is a triple (E,g, &)
whara (E;g) is a finite poset (i.e., partially ordered set) with order
ralation denoted by g and & is5 amap € : E «» P satisfying the two
following conditions

(i) for every m,a€EE such that s(w) € s{B), then  end g are
comparable (i.e mgp Or ago).

(i) fer evary m,BEE such that m<p and B covers & (i.e. aLY¥CAR = ¥=o
or ¥=g) then &({a) € e (p).

The ealements of E will be called pieces. When wges, we will| say
that the piece p is above tha piace a.

Remerk thet P ig not necessarily finite but it is important teo
set down that all the heaps we consider in this thecry are finite.

Exemple 2.2. Let 8 = [0,8] % (0,81. A cell (or elementary square) is
the set of points (x,y) of B =such that i<x<i+l, j=<y<j+1 for certain i,
j of [0,7]1. The set P of basic pieces is the set of subsets of B formed
by tha union of two cells joined by an edge. The concurrency relation €
ig defined by a¥b iff anb # g. A heap E with pieces in P was visumlized
on Fig.1.

Here the mep g is the projection asgscciating to each dimar of
the heap its “geocgraphical position", i.e. an etement of P (see the
heuristic introduction in 81).

L )
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Exemple 2.3. Let P = 2 be the saet of integers . The concurrency
relation ® is defined by : i®j iff |j~i{g1 for i,J€P. The poset E
18 dafined on Fig.2 by
its Hasse diagram,
{i.e. an edgs goes

; § é : upward from o to B iff
: : : i g covers m}. The map s
is defined aon Fig.?2 by:
far @€E Iying on the

vertical |ina x=i, then
6 (®)=1.
The reader will verify

that the axioms (i) and
{il) are satisfied.

= W

Fig.2. A heap of pieces.
Egqulvalent definitions for heaps

a) Conditions (i) and (ii) can be replaced by (i) and (ii”} where (ii*)
is the following condition

for every a,p€E with mgs, there exists a sequence a=xig...
(ii?) g&y=p of pieces of E such that e(m;) ¥ s(®y4+1) for avery i,
1g€i<k.

b) A second formulatien is (i) and {ii™) where (ii") is the fotlowing
conditian

the order relation g is the transitive closure of the
(ii'") relation ' defined by : for ®,86E, w €p iff ugp and s(a) €
£ (a).

c) A third formulation I8 the following. Let §: E =+ P be & map of the
set E in P, Let G(E,s,;¥) be the graph which vertices are the elaemants
of £ and with an edge between g and p iff e(x) ® 6(p). Then defining an
order retation g on E such that (E,g,6) satisfies conditions i) and
(ii)y, ig nothing obut defining an acyciic orientation of the graph
G(E,s,®M (i.e. an orientation of each edge such that the graph does not
contain cycles).

Subheap. Let ({E,¢,s) be & heap and F a gsubset of E. Let &' be the
restriction of 6 to F. Let ® be the relation defined on F by s ® p iff
g8 and s(m) ¥ eg{g). Let " be the transitive closure of ®. Then
{(F,g',&”) ls called a subheap,

Definition 2.4. Let (E,g,6) and (E* ,&" ,6’) be two heaps of pisces in P
with the same concurrency relation ®. We say that thay are |somorphic
iftf there exists a bijection p:E «+ E' which is a poset igomorphism
(i.e. wg@ in E iff pi(@)g’w(B) in E’), and such that ==&’ op.



326

Definttion 2.5%. A heap of pieces (in French : empilfement de piédcesg) in
P with concurrency relation % s a labeled heap (definmition 2.1)
defined up to a heap rsomaorphism {or equivalence c¢class, tor
isomerphism, of |abeled hegps).

ln  the folliowing, & heap will be dencted by one of its
rapresentative (E,g,8} o©or E for short. We will sometimes use the
notation E = {E,g ., E). We will again say that the elements of E are
pleces, and calt the order relation g as "toe be sbove". The set of all

finite heaps with pisces in P and concurrengy relation € is dencted by
H(P,¥).

Lemma 2.6, Any automarphism p of 8 labeted heap (E,g.€) igs trivial
{il.e. I the |dentity map of E)._

Proof. For any basic piece a€P, & (e} is & finite chain of E (from (i)
and the reflexivity of €. The relation eZecyp Implies that p preserves
this chain, As it s a poset putomorphism, we deduce that p is the
bdentity map.

Let a8, ba thne number of heapsof H(P,¥) having n pieces. From
lemma 2.8, we deduce that the numbker b, of labeled heaps, with set of
labels any set of n elements as for exampiea E = {1,2,...,n}, is
bp=n'aj. When enumerating heapg (resp.labeled hegpsg) we will uUgse the
ordinary {resp. exponential) generating function E antn (resp. £ by,
tn/n!). n;0 nyd

In fact, labelad heaps are an example of Joyval|'s species [38].
Heaps are the corresponding type of species.

Definltion 2.7. Let £ and F be two heaps of H(P,¥). tha product H=EeF
(or superposition of F over E) is the heap H defined by the feollowing
it E = (E.x,6} , F = {F,g.,e”), H = (H,g,e"), then
E E H
1) H=E+F (disjoint un.on of £ and f)

(i) " 15 the unique map e":H-P which restrictlion to E {resp. F)
18 & (resp. €£7).

(lii1) the order retation g 15 the transitive closure of the
- H

following relation & for w,p € H, a & p iff
- m,p E E and oge
E

or - %,8 €E F and mge
F
or - BEE,p€F and e (x)€ €’ (p).
Ramark that E and F are subheaps of E®F.
Such & definition I8 compatible with isomorphisms and thus is
wall detfined on the set H(P,¥) of heaps.
This product of heaps 18 associative and H(P,®) is a menoid,

‘ca,l ted the heap monoid, which neutral eleament is the empty heap denoted
by &
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An element & of P will be identified with & heap reduced to a
gingle piece. The heap E@®® is said to be cbtained by adding (or
putting the {(basic) piece o above the heap E. Any heap E is a product
(in general in several! different ways) of its (basic) pieces. Remark
that for any two basic pieces.

(1) x,8EF, ow®p=péa |ff f B (1.e. @wand B are nat in concurrancy).

The product of heaps Is a |eft and right simolifiable product,
that is : E®F=E®f’ = F=F’ and E®F=E'eF o E-E”. If E@u=F, for o&P and
E,FEH(P,®), we will say that E is obtalned by deleting the piece ® from
the top of the heap F.

Deflnition 2.8. A trivial heep ls & heap such that the order relation g
e trivisal, That iS no pieces are above another.

We will dencte by T(P,¥) the set of trivial heaps of H(F,®). |f
the concurrency relation € isaemptfﬁ #very heap is trivtal and the heap
monoid H(P,®) is isemerphic to the free commutative monoid generated by
P

Lemma 2.9, Any heap E €'H(P,®) can be written in e unigue way &s &
product of trivial heaps € = Ty@...8T, satisfying the cenditign

(2} for eny 1gj<p, any pleces of Tj4.4 is above a piece of Ty

It suffices to take Ty as the subheap formed by the minimum
elements of E. Then ene can write E = Ty®E;. Repeating recursively this
factorization, we get the unique factorization satiafying (2).

This factorization can be characterized in another way. |t Isg
the wunigue factorizatien into a product of trivial heaps, sach factor
having maximum cardingl | ty.

3. The Cartier-Foata commutation monoid

Let A be a set and A* ba the free moroid generated by A, that

Is the =set of words u=ajag...ap, with fetters a; in the set A (calied
alphahet) , tegether with the multiplicative |aw cancatenation af two
words u=ay..ap and v=d&y..44, wuvzap..apby..bg. The empty word is

dencted by e.
Let ©C be a symmetric and antireflexive relatior on A (+.&. aa
for every agd).

Definitlon 3.1. The commutation monoid Co(A,C) is the guatient of the
free monoid by the cohgruence =, generated by the (commutation)
relations

(3) for every a,b € A with a C b, then ab a, ba.

The words u and v are eguivalent iff onae can transform U into v
by B seguence of transpositions of two consecutive letters a and b such
that e C b, The monoids Co(A,C), introduced by Cartier and Foata [8],
are also called free partialily abelian mornoids.
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Wa suppogse that the alphabet A is the gset P of bagsic pieces
equippaed with tha concurrency reletion ¥. Let C = ¥ be the complementa-
ry ralation (i.e. a Cb iff a f b). We are going to show that the heaap
monoid H(P,®) is e commutation monoid isomorphic to Co(P,C).

We define the mep p : P -+ H(P,®) by the reletion
(4) for w = ®1@sz...0,6P% , p(w) = m:Gxg®. . @x,EH(P,¥).

In other words p is the unigue morphism (of moncids) such that
for xéP, p(a) is the heap identified with the basic piece ®.

_ Lat {€E,¢) be a poset having n elements. A natural labeling of
the poset (E,g) is a bijection f @ E 4+ I{n)={1,2,...,n} such that

(5) for avery a.p € E, egp = f(x) <f(n).

Anothar equivalent definitton is the so-called /inear extension
of a poset.

Lemma 3.2. Let (E,g,6) be a heap ot H(P,®). For u = ®y...xp € ¥ L{E),
det A{u) = f be the [abeiing f:E-=[n} defined by e (F"Y(i)) = ®;. The map
A is g bijection between the set of words u'l[E] and the set £(E)
of natural labslings of E.

Proaf. a) From the definition 2.7 of the product of heaps, the heap E =
xi®®q®. . .90, Iis obtained by adding vertices £5,8g,...55 to the empty
heap, with +the map £ defined by €(sy) = ®y, and the order relation ¢
defined by

(6) %« is the transitive ciosure of the relation & defined by s; & s
iff ig) and ey ¥ wy.

Thus the mep f=X(®;..8y) defined by f(sij) = i is a natural labeling of
E.

b) Conversaly, iet f: E -» [n] be a natural labeling of E. Let
t1=f'1(i] € E (gign} end B85=6(ty). Let F be the heap F=p(dy...Ba). We
can identify the vertices of the two heaps E and F. We show that these
hgapg are isomorphic. IF s ¢ t, then frem heap exiom (ii’}, there

E

exists B seguence ity = 8 & ... £ty = t of vertices of E such that for
] E E k
jalgj=<k, ty ® tlj . As the map ty—»i is 8 natural labeling of E, then
4 1

b1g---€lg- From the definition of the oproduct p;®ss® ... e, , we
deduce t; s 1y and thus s s t. The heaps E and F are isomorphic and
¥ J+1

B1®...98, € v ' (E).
Cembining a) and b) the map % is a surjection from u'l(E) onto

2(E). As it is obvious!iy an Injection, the |amma 18 proved.
o
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Lemma 3.3. For every heap E € H(P,¥), the set of words ¢ ' (E) is an
equivalence class for the commutaticn relation w,.

Proof. a) If @ and g are two basic pieces not in cehcurrency, the two
heaps «®p and p@x are trivial (definition 2.8.) . Thus «ea-pox.
For u,v € P', we deduce that u mg v implies plu) = @ (v).

b) Conversely let u=f;...®p &nNd v=B;...Bn be two words such
that pdy...%5)=p(B1.-.By) is the heap E. As in the proof a) of |lemma
3.2, let 231,...,8n be the vertices of E = (E,g,8) with € (sg)=ay. From
(6), the vertex s; of E is minimal (for g} iff no pieces ®y, I1gi<i are
in ¢concurrency with oy, that is ®; commutes with all the |ettars
located et its left in the word u = ®1..m,. We can write u mg uiu; #
where u; is the word conteining all the latters (commuting two by two)
of u ¢corresponding te minimal elements of E.

Similarly, we can write v =g vlv; , where vi |Is the word
containing all the letters (commuting two by twa) of v corresponding to
minimal elements of £.

Thus uy; =¢ vy and u{ul):p[vl) is the subheap Egy obtained from E
by oeleting all its minimal elements (see lamma 2.9).

By & recurrence on the commen length of the words u and v, we
deduce that u and v are eguivaelent modulo ag

[m]
Combining lemmas 3.2 and 3.3, wa deduce

Propesition 3.4, Let H(P.¥) be & heap monoid with pieces in P and

concurrency relgtion ® Let C be the complementary relation of €.
The morphism of monoid p: P* -+ H(P,¥) defined by (4) ipduces an

isomorphism @ Dbetween the monoid H(P,®) and the commutetion monoid
Co(P,C}.

It may be useful to restate the definition of this isomorphlism
®:Co(P,C) -+ H(P,®), together with its main properties coming from the
proof ¢f lemmas 3.2 and 3.3,

a) Let U be an element of Co(P,C).Choose any representetive
U=ptglz...%n ©f this class of words. Then the heep p(u) “xy@xe®...%ay i85

independent of the choice of u€l and will be denoted by i {(U).

k) Conversely, it E = (E,€,8) is & heap of H{P,®), taking any
natural labeling f: E =+ Inl of 1the poset (E,g), we define a word
UZUg...up with ui=s(f_1{%)}.Let U be the equivalence class of u for =c.

Then the map E - 4 is the reverse bijection of tha bijection
p:Co(P,CY - H(P,®).

c) Let U be a commutative class of Co(P,C) end u=&;...Ex be one
of Itts representants. We define & poset ({n],g) in the following way.
The vertices are the integers 1,2,..,n. The order relation g is defined
by the foliowing relatlion

{(7) ig) iff there exists & sequence 1gig=i<...<ix=jgn such that the

letters wy and &y do not commute (for 1gj=<k).
] 1+1
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Defining the magp e€: [nl -» P by e(1)=5y, we have now & |sbeled

heap E(uy = (Inl,g,e) which ts & representant of the heap w{d). This
labsling f of the wvertices of wg(U) by the integers 1,2,...,n I8 &
natural ifabeling. The map v - f s a bijection between the words of the
equivatence class U and the natural labelings (or |inear extensions) of

the poseat undearlying the heap ().

Remark that the ordar relation defined by (7) is the transitive
¢Closure of the relation defined by Cori and Métivier from the directed
graph dencted by T{u) in [12]. Also, to give the labeled heap E(u) =
(Inl,g,e) is equivalent to give the so-called "dependency graph” of the
word u introduced by Ferrin in [433.

If we restate lemma 2.9 in terms of commutation monoids,
we get the classical property (see Cartier, Foate [9]}

Corollary 3.5, Let uv be a word of p* and CoiP,C) be a commutation
menoid. Then U can be wrilttep im & unigue way uU=uy.. Jp where aach uj
s a block of letters commuting two by twe, and for egach pair of
consecufive blocks uUjyuj+q, any detter of uj4y does not commute with at
least a tetter of uj

This wunigque fagtorization s <c¢alled the mormal farm of u in
[43] and V¥-factorization in Cartier-Foata [8). {n fact tnis corollary
also comes fram part b) of the proof of lemma 3.3.

4. Graphs, Heups and Poseis

Let P and B be two sets and |et m:FP-+ #(B) be a map from P into
the set of mon empty subssts of B, We define the concurrency relation ¥
by the relation.

£8) for a,b E P , n €b I[ff wia) nnwib) £ @&
In this fundamenta | example of heaps, the heap mongid H(P,€)
will also be dencoted by H(P,m,B). The set B is called the basis. The

subset m(a) is called the support of the basic piece a € P

Let E = (E,g,e) be a heap of H(P,n,B) and &« € E be a piece of
E. The subset moe () will also be called the support of the piece m. We
say that twe pieces m,m € E (resp. basic pieces a,b € P) are disjoint
if +their suppert are disjoint. In tha contrary, thaet is (o) ¥ & (B)
(resp. a € b) they are said to be intersecting. Two heaps E and F ara
seid to be intersecting Iff one piece of E intersects one piece of F.

Example 4.1, Let B = 2 and P be the set of dimers, that is the set of
subsets of the form {i,i+1}, (€2 . We define m as the restriction te P
of the identity map of #(B).The heap displayed on Fig.3 Is" isemorphic”
to the hesp of Fig.2. (here the term "isomorphic” would be an extension
of definition 2.4 to the cazse of two heaps wlth different set of baesic
pi'sces, seo belew just besfore remark 4.4).
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Fig.3. A heap of dimers on 2.

Example, 4.2, Let B = [0,8} x [0,8) and P as In example 2.2. Let % be
the restriction toe P of the identity map of #(B}. Heaps of H{P,n,B)
were considered in example 2.2 sand are visualized on Fig.1 of the
introduction.

In fact, any heap monoid H(P,¥) can be identified with a heap
monoid H{Q,n,B). For that., we need the follewing definition.

Definition 4.3. Let ¥ bo a concurrency relation {(i.e. symmetric and
reflexive) on the set P. The concurrency graph |s the graph G(®) with
vertices |n P and with edges {fa,b} € A iff a ¥ b and 8 # b.

Let B = PuA. For each m € P, we define the subset p(e) of B by

(2) niay = {aYy u {{a,b¥eA)r.

The mep M is a bijection between P and w(PY=¢. Now a € b (ff

glajnpi(b) 7 m . Let W be the restriction to @ of the Identity map of
F(B).
Any haap (E,£.,8) € H(P,®¥) ]
is "fsomorphic” te a heap (E’.g.&) of E =———und P
Hi{Q,m,B), i.8. there exists & poset
isomorphism 9i:E - E’ and a bljection P W
u: P > Q “preserving” the concurrancy
relations of P and Q, such that the £ Q — #(B) .

e
foltowing diagram is commutative g’ n
Remark 4.4. The construction of the mep u defined by (8) is related to
the so-celled [/ine graph (or median greph) of the concurrency greaph
G(E) .

If the graph G(¥) s representad by points of R joined by
segments, then one can repraesent p(a) as the get of points formed by
the wvertex a and the middle of the edges containing this vertex a. Tha
pieces loock like starfishes (see Fig.4).
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The meonoid HQ,m,B) constructed above from P and ¥ will be
celied n starfish monoid.

Proposition 4.8, Every heap meneid is isomoerphic to A starfish monoid.

Coencurrency graph

Fig.4. A heap of starfishes.

Proposition 4.8, Every poset (E,g) can be represented as the underlying
poset of a heap (E,g,e).

For the proof of this proposition, we need tha foliowing
definitions.

Let (E,g) be a poset and # = (Cy) g1 be a femily of chains. We
say that & strongl!y covers E iff, for every pair w,p of elemants of E
such that @ covers g (i.e. &« and p are connected by an edge in the
Hesse diagram of E), then there exigts & chain C; of & centaining both
® and B

Let #F = (Cj)ier be such & family (always exists). We take as
besis the set B=l.The basic pieces &are the subsets of I and 71 |Is the
identity of P = #(I). We define the map € : E — P by e{m)={i€l,meC}.
The concurrency relation € is defined by (8).

The 1triple (E,¢,8) satisfies condition (i) of definition2l of
lebated heap : {f ®,p€E, e(x)¥® s (pr) implies that o and 8 belongs to &
same chein C3; of #. Condition (ii} of definition2l follows from the
strongly covering property. &

It would be Interesting to reprasent some known familleg of
posets as familiss of heaps H(P,n,B). Is it possible to give a poset
characterization of the possts underlying heaps of a glven heaps monoid
Many gqguestions arise about representations of posets with heaps. Hare

we will mainly be interested Iin heaps as a tool for cembinatorial
enumeration and combinatorial interpretation of classical results or
identitias. Nevertheless we will mention the following proparty.

Lat E = (E,¢,£) be & heap of H{PF,m,B). For x€B, the riber of E
over % is the set defined by

{10 Fy(E) = 4{w € E, x € 7mos (@)}
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Such fibers are chains. The family {Fx (E)3¥xep Strongiy covers
tha poset (E,g).

The minimum cardinality of the basis set B such thaet the posat
(E.g) Is realized as n heap of H{(P,n,B) is the minimum number of cheins
strongty covering E. This number is not less that the minimum number of
chains covering E. This last number is more classicel in poset theory
and, from Diiworth’s theorem is known to be equal to the maximum
cerdinality of gntichains of E (set of elements two by two
Incomparatle) .
v
The reader may ask the interest of introducing the map P — #(B)
instead of simply introducing the basic piaces as subsets of B. We will
need besic pieces where a combinatorial structure |s definad on thsir
suppert. An important example will be heaps of cyecies. Here P is the
gsat of all cycles of B (in the sense of cycle of permutation : that is
g circylar permutaticen on a gubset of B), The map w associates to a
tycle (ts=underlying set of vertices. An examp!e is displaved on Fig.5.
The order g between the cycles is defined by the fibers (corresponding
to the vartical linasg).

Fig.5. A heap of cycles on M.

5. Heap Generating functions

Let H(P,¥) be & heap monoid with basic pieces in P and
concurrency relation ¥, Let KIL[X1)l be the algebra of formal power
series with variables in 8 set ¥ fnot necessarily finite) and with
coefficients in the c¢ommutative ring K. We deflne & valuation (or
weight function) &s a map v ¢ P — KI[X]1] which associates to avery
basic piece wéP 8 power seriesvi(m) having no constant term. This lest

condition e necessary for the summability of heaps generating
functions. in general, most eaxampias of the theory wil! be such that
v(m) is a monomial in variables from X.

The wvaluation {or weight) v (E) or & heap E=(E,g,8) is the
product of the valuations of its pieces v(E) = W vie(&)).
®EE

In all this work, we suppose that the vaiuvetion v satisfies the
following condition
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for every monomial W in the variables ¥, there exists & finite
(11) numbar of heaps E of H(P,¥) such that the coefficient of u in
the seriesv(E) ig # 0.

This condition, which 18 satisfiaed when the set P of basic
pieces is finite, |mpi{ies the summebility of the heaps genearating

function E v [E) .
EEH (P, H)

Proposition 5.1. {Inversion {emma) Let H(P,®¥) be a heap monold with &
valuation v satisfy|ng {11). The generating function of the weighted
heaps of H(P,¥) is given by

1

(12) ) v(E) = ;
I# |

EEH (P ,®) > (-1) v (F)

FET(P,®)

where T(P,€) denotes the set of trivial hesps (definition 2.8).

The identity (12} is equivalent to the Identlty

|
(13) ) 1) vE) V) =1,

(E,F)
where the summation |ls over altl pairs (E,F) of HT=H(P,.®) x T(P,®).

Let M{E,F) be the set of pieces formed by the pietes of F and
the meximel pieces of E which are not In concurrence with pieces of F.
Ltet L be & non-empty trivial heap. In the summation {13), we select
enly mpairs (E,F) such that M{E,F)] = L. We can write L=L®Lg with
EzEi@eLy and F=-Lg(see Fig.6). Thus, we have the identity

IF| ILz]
E -1 VI(E}V(F) = v (L) Z v (E1) E -1 )

(E.F)EHT Eq Li,La€T (P,®)
MI{E,F)=L L=L,eLy

where the first summation of the right hand-side |8 over heaps
E1€H (P,¥) such that all their maxima! pieces are |n concurrence with at
leest 2 piece of L. The second summation of the right-hand side is Q.

Thus, tha only non-vanishing term in §13) is the pair corres-
pending te M(E,F) = @ , that is E=g, F=g. Itg weight |s 1.
m]
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Remark 8.2. If the reader prefers a proof with bljections; it woeuld be
possible to define a sign-reversing involution on the set HT. The |dea
is simply 1o "trangfer” & piagce o of F on the top of E, or vice-varsa
(see Fig.B). We totally order the set P of basic pieces. For a pair
(E,F)€EHT, (E,F} # (&,@) ,we take the smallest piece & of M(E,F). !f & is
a piece of E, then E=E;®x and we define Y(E,F)=(E1,®F). |f o is a
ptece of F, then F = Fyeq (=xeF;) and we define ¥ (E,F}=(E®&,F1). The
map ¥(E,F) — (E',F") is an involution such that
CnfvEve = -0 P oviEviE).

= - -'--*E(-

DIECE cf M(E.F)
E maximal pirece of E nat in MIE,F)

The goncurrency ralatraon ® 5 tha inlarsectiion re:atien

Fig.6. Proof aof proposition 5.1,

In term of commutation monoid, relation (12) is nothing but
expressing the MBbius fungtion of that monoid (see theorem 2.4 ot
Cartier, Foata [(81). MBbius inversion of posets is a classical chapter
of Combinatoerics which has been popularized by Rota {421. Content,
Lemay, Leroux ({111 present =2 synthesis of Rota and Cartier-Feata’s
Mibius inversion. We give the following extension, which genernlizes a
proposition of Desainte-Catherine [1d4]1, {151.

Propasition &.3. Let H(P,®) be a heap monoid with a valuation v satis—
fying (11). Let M he & set of basic pieces of P. The gengrgting
functien of weighted heaps of H(P,¥) such that the maximal pieces are

in M is given by.

N
(14) E viE) = —, with
0

EEH (P,®)
Maximal pleces M

[FI 1ol
D = E (-1 v {F) and N = E (-1 v(F).

FET (P,¥) FET (Px\M, %)
where T(P,®¥) denotes the set of trivial heaps (definition 2.8).
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It would be possible to define a8 sign-reversing involution as
in remark &.2 transfering & piece o from E to F, by taking M(E,F) as
the set of minimal pieces of E, not in concurrence with any pieces of
F, together with the set of pieces of F which are in M or in
concurrence with at least one piece of E. The pairs corresponding to
M(E,F) = @ area the pairs |nvolved in the summaticon for N.

A simpler progf, &8s suggested by A.Joyal, ls to apply
proposgition 5.1 and the following lemma.
Lemma 5.4, let M c P and E € H(P,¥). Then the heap E has a8 uni
factorization E = E;9Eg whers is a heap with maximal pleces in M an

i N
Ee is 8 heep with pieces pot in M.

}2
[+ [

The power sarie D appearing as the denominator of generating
functioen (12) and (14) plays an important rele in heaps theory. We will
call this power serie the exclusion power serie for the pieces P and
concurrency relation ¥ {and the valuation ), or for short the
exclusion serfie of the heap moncid. We will denote it by D or D(P,¥) or
D(P,€,v}. If P is finita, D is a polynomial, the exclusion polynomial.

Example 5.8. Let A = (a;;) be an nxn matrix. Let B = [nl, P be the set
of cycles on B and fnn : P — #F{B) the map associating to a cycle its
underiying set. The concurrency relation Iis definad by (8). The
valuation of the cycle ¥=(Xj...xp) is the product Z"ay ; ..e&4 g 8x x
1732 m-1m m t

The letters X and &¢; can be considered as formal variables in X. Then
it is aimost the definition of the determinant to say that D(P,®) =
det {1-XA) .

Thug the characteristic polynomial of the matrix A can be
considered as tha reciprocal of an exclusion polynomial.

Example 3.6. Let B = W be the basis and P be the set of monomers (i},
in0 and dimers {1,i+1Y%,1 20, with concurrency relation the intersection
relation as 1n §4.

Let 4Lbylyx ;o &end Lhulusi be two sedquences of the ring K. The
monomer {il}, i 3 0 is weighted byx. The dimer {i-1,1%, i » 1, is

waeighted )ixx.

|f wa restrict the basie to bs By = [0,n—13, with pieces in Ba,
let Pnp(x) be the corresponding exclusion polynomial. These polynomials
satisfy the three-terms |inear recurrence relation

(15) Pasr(x} = (%—ba) Ppi{®) - Ap Pa-31(x), with Pag(x)=1, Py({X)=x-bg.

From Favard’s theorem the sequsnce {Ph{x)dpyo i858 a seguance of
formal orthogonal pofynomiale and conversely,any orthogonael polynomials
are obtained this way. (see for exemple Chihara [10), VYiennot [471]).

Example 5.7. Let G = (V,A) be a graph with vertices in V and egges in
A. Lat P = A with concurrency relet|ion  be the intersection relation.
The weight of an edge is x2. Then the matching polynomial of the graph
G (saa for example [201,£321,[35]3) is the reciprocal of the
corresponding exclusion polynomial.
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Exemple 5.8, Let G = (Y,A) be a graph with vartices in V and edges in
A. The set of basic pieces ig P=V with concurrency relation € defined

by : a e and a €b iff La,b} € A (i.e. G is the concurrency graph of
%) . Each wveartax is weighted x. We propose to ceil the corresponding
exclugien polynomial the independency polynomial of the graph G. It is
less «classical than the matching polynomial, but it appears in some
statistical mechanics models (see below §9,b). In fact, up to & change

of variable, the matching polynomiel of the graph G is the Independency
polynomiel of its so-celled /ine graph

We interpret below the logarithm of the genereting function of
weighted heaps. We suppose that the ring K is the field § of rational
numbers. We need the following definition.

Definition 5.9, A pyramid is a heap having a unigue meximal piece.

Proposition 5&.10. Let H({P,®) be 8 heap monoid with a valuvation v

satisfying (11). Thean

v{F}
(18) : iog ) v(E)| = Z ;
IF]

EEH(P,®) F

where the second summation is ovar all _pyramids of H(P,®).

Condition £11) implies the summability of both sides of
identity (18).

Here we work with exponantial generating functicen, that is

jabeled hesaps
v (E)
) e Z )
n!

EEH (P,®) 20 IEl=n

This genereting function i8 the exponential generating functicn
for labeled (by 1,2,...,n) weighted hesps. We decompose such heaps E
into pyremids in the following way

We select the piece %3 of E with minimal label (i.e. 1). Let E;
be the subheap formed by all the pieces below my (order ideal). Ey Ig 8
pyramid and in fact E ¢en be factorized E=E19E;- Another way to define
Ei is to say that there exists a unique fectorization E=E10E1 such that
Ey is & pyramid with maximaf piece xy. We select the piece my of Ej
with minimai label and get a factorizetion E:EleEg@E; . Recursively we
have a factorizatien of the heap E into a product of labeled pyramids
with the property

(17) the piece with minimal label is the maximal piace of the pyramid.
Conversely, from the set {E;,...,Ex} of such pyramids, one ean

reconstruct E by taking their product In the increasing order of the
label of their maximal aleamant.
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'n the context of species of Joyal [381, or of Foate® s "composé
partitionne!™ (251, & heap is an Tassembly" of |abeled pyremids
satisfying {(17)y. Their exponsntial generating function ig the rilght-
hand side of {186) . The proposition comes from standard result on
essembly of species ¢r on "composé partitionnel ™, i}

heap assembly of pyramids
Fig.7. log(heap) = pyramid.

Im the next sections, we give a summary of the possible
applications of heaps theory to enumerative and interpretative
combinatorics, This will be done in details in the papers
[153,0181,0501,0511.

@. Flow monoid and combinatorial proofe In [inear algebra
(summary of L[181)

We use the notations of §4. The basis is B. The set of basic
pieces is P = B x B. The projection ® : P — #(B) is defined by

(18} for any (s,t) e P =B x B , n{is,t) = s.

Definitian &6.1. The filow moneoid is the heap moenoid F(8)=H(P,mw,B)
defined by {(18).

This corresponds to the flow monoid introduced by Cartiar,
Foata [81 : the edges (s,t) and {s’,t') commute ff s 7 87.

The heaaps of H(P,nm,B) are caelled flows. Such s flow E is
defined by its fibearg., The fibar F.(E) over s € B is isomorphic to &
word of B: with By = s x B . In fact there is no order relation
between two elemants of distinct fibers and the flow monoig is
isemorphic to a direct product of free monoids H(P,m,B)x T B: (see
Fig.8). 1EH

Definition &.2. A rearrangement is a flow E-(F,g,E) of H{(P,#,B) such
that for avary s € B, the fiber Fg(E) defined by (10) sstisfies

(19) IFs(E)| = |{®€E, £(m) = (t,s)}
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In other words the number of edges (t,s5) of E coming in 8 isg
the same as the number of edges (s,t) starting from s.

The rearreangements form a submonoid R(E) of the flow monoid

F{B).
Fig.8. A flow.
Tha two folfowing propositions are typical examples of
bijections trensforming a heap inte another heap of bigger pieces

obtained by "gluing" the small| pieces (or conversely "breaking” pieces
into smaller pteces) .

A pgth w of B ig any sequence w-(8¢g,;81,..-:%n) of points of B.
We consider the heap monoid S&PCy (B) = H(Q,®,B) which pleces 0 are
cycles (Cy) on B or self-avoiding paths {(SP) on B (1.e. no twg vertices
appear twice in w) and the projection . is the map associating to A

piece its wunderiying set of vertices of B. A path w can be identified
with the flow (s¢,5:)9(sy1,59)® ... ®{sp,-3,5a), {product of heaps).
A ecycle ¥ = (81,...,Sa) (see the definition at the end of %4

and also see example 5_5) can be identified with the rearrangement
(51,52)®. . .@(5n.1,8,)9(35,51). The submonoid CyiB) of 8PCy(B) is formed
by heeps of cvcles.

Progposltion 6.3, Let u,v € B. There exists g biiection between paths o
of B gaing from uw to v gnd pyramids E of SPCy (B) such that al| pleces
are cycles of B, except the maximal piece, which is a gelf-avoiding
path m geing from uw te v. Thig bijection is such that the number of
gdges (5,t) in w (or slementary steps) in the same 8s the number of
edges {s,t} contained in the cycles and the paths 7 of the pyramid E.

This bijection is particulerly usefu! for the enumeration of
cartain families of haaps (see below the directed enimal problem).

Proposition 6.4, There exists an isomorphism of monoids ¥:Cy {B)—R (B}
betwean the heap monoid of cycies and the heap monoid of rearran-
gements. Mcoreover, for any s,t€éB, ¥ preserves the number of edges (5,1t}
in each heap.
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Each bijection of propositions 6.3 and 6.4 is obtained by
"breaking” the heap of c¢vcles {and self-avoiding path) into its
elamentary components : the edges (s,t) considared as alaments of the
flow monoid.

Combining the above propositions with the propositions of §5
gives combinatorial proofs of classical identities in linear aligebra
(see [91,[26]1,0271,[361,1461,0521).

%1 Y1
Let A = (Byy) be an n x n metrix and X =[ . ],Y = [ : ]:Ax.

Xn Yo
Paths and cycles are weighted a8 in example 5.5 by
vi{w) = \I’{So,Sl) cew Vi8p-1s8g) and vwi{i,J)y = ajj-
®y [ T
Corollary 6.3. (MacMehon Master thecrem). The coefficient of xy ... x4
in the formal garie 1/det(/-AX) is the game as the coefficient of
' 3] [ ®1 Bn
X1 ... X in the polynomial ¥i ...¥n

This is a combination of proposition 5.1, example 5.5 and
proposition 6.4,
Corollary 6.8, (invergsion matrix formula) The term (i,j) of the inverss
matrix [Fﬂﬂ'.J'l is Ny,/det(l-A) where N;yy is the term (j,i) of the
adjoint metrix (cofector).

This ic & combination of proposition 5.3, example 5.5 (together
with & companion formula for the cofactar) and proposition 6.3,

Corollary 6.7. (Jecobi identity)
1
(20) —————— = exp(Tr{log(I-A) " 1y).
dat (| -A)

This identity comes from a combination of propogsition 5.1,
example 5.5 and proposition 5.3 (in & slightly more general version).

Also, Cayley-Hamilton theorem <c¢an be obtained by wusing a
slightly more general form of the identity (14) of proposition 5.3.

T. Orthogonal polynomials

Any segquence {PRi{x)}n o of (formal) orthogonal polynomials
appaars 8s the sequence of reciprocal of the exclusion poalynomialis of
weighted monomers and dimers on the segment LO,n-1]1 (see example 5.6).

A combinatorial theory of classical properties valid for any
ssquances of orthogonal poiynomials has been made by Viennot [47],
following work of Flejoleat [22]1. This combinaterial theory is written
in terms of cartain weighted gaths (called Dyck and Motzkin paths).
Some of the bijective proofs can bes simplified by using heaps termino-

- lagy. The Dyck (rasp. Motzkin) paths-ere transformed (by proposition
6.3) into pyramids of dimers (resp. monemars and dimers) on B = M.
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The main property is the following. Let P,(x) be the sequence
of polynomiats defined by the recurrence (15) and H(P,w,B}) be the heap
monoid of monomars and dimars on B = M, weighted by the sequences
tbypYyso and (Axrgxg of elements of the ring K as in example 5.86.

Let up, be the sequence defined by
(21) M = & v (F),
E
where the summation is over all weighted pyramids of m monomers and d
dimers such that n = m+2d and such that the maximal piece contains tha

valua O (i.e. this maximal piece is either {0} or {0,1}), sea Fig.9.)

Let f be the unigue |inear functional f:KIx] — K such that
f(x™) = p, (na0}.Suppose that 5u#0 (k31) and that K hag no zero divisers.

Proposition 7.1 - The polynomjals Pntx) defined by the three-terms
linear. recurrence (15) sre orihogonal with respect fto the seguence of
moments pp defined by (21}, that is :

(22) fP«P1) = ¢ if k # | end f(P§) # 0, for every k,i30.

The proof follows from the same generalization of identity (14)
of propesition 5.3 mentionsed at the end of §6 about a bijective proof
of Cayley-Hamilton theorem.

S @ 0 0 .......... O
: - ~hg ~ba

i i F
Qrthogenal pelynomial Py (4)

Dby i G)hﬂ i Momant ey with nzmeid

Fig.9. Orthogonal polynomials and moments interpretated as
exclusion polynomials and pyramids of monomers-dimers.

Many wother properties of general {(i.e. formai) orthogonal
polynomialg c¢an be deduced from heaps hesic lammas. In particuler the
Jacabi continued fraction expensicn (corresponding to Frajolet’s

theorem About weighted Motzkin paths) here becomes & simpla congequancea
of a decomposition lemma about the pyramids interpretating My inte
other pyramids. This decomposition is the eanaleg, for ordinary
gensrating functions, of +the decomposition given in the-proof of
preposition 5.10 with exponential genereting functions.
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Corolalliary 7.2. With the above potetion (21) ,

1
(23) > ppt"t = ————
1-bpt ~ Hpt?

nal

The convergents of the continued fraction {(23) are nothing but
the generating functiens of the pyramids Interpretating p, and bounded

on the segment EO0O,n)l. Thus, applying proposition 5.3, these convergents
are -

(24) §PR (1) / Phsy(t),

where P;*ltt) ls the raciprocsl t“*‘Pn+1(1/t} of Ppoy1(t) and P, (t)is
the exclusion polynomial for heaps of monomers and dimers on [0,n) not
econtaining the wvalue 0, that is the nth orthogonal polynomial corres—
ponding to the "shifted” valuations by = brei » Ak = Ag#1.

If we take by—0 and Xy = -qk, then we get the exXclusion power
serie DI(P,¥). We are in the case of an infinite get of pieces and (11)
lg satisfied. Taking the basis B = W , the exclusion power serie D(q)

18 the left hang-sida of the famous (first) Rogers—-Ramanujan identity
{see for example Andrews [11)

2
n

9 1
(253 1+ é " rTT
(1-0) (1=a%) ... (1-a™  n30 e T Ll

(1-g
nal

The left hand side of the gecond Rogers-Ramenujan identifty

2
qn +n i
(26) 1 + E = FIT
(1-a) ¢1-a®) ... (1-a™)  np0  (1-9°"*3) (1-q%7*9)
ng
can be interpretated as the exclusion power serie N(q) for weighted
trivial heaps of dimers (with valuation Xy = —qk} not containing 0.

FPreposittion 5.1 and 5.3 gives interpretations of the genarating
functions 1/D(q) and N{a)/D(q) . respectively in terms of heaps and
moments pyram|ds. We can easily deducea Andrews’s I[nterpretations [2]
with guasi-partitions.
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8. Heaps and algebraic araph theory
a} Matching polynomials of graphe (summary of [151)

Let G be a graph. The matching polynomial of G {5 the
raciprocal of the exclusion polynomial D(G:x}) defined In example 5.7
pieces are dimers on G (i.e. edges) weighted by x%. Several work has
been done on these polynomials, in relation with physics and chemistry,
gee for example [201,031),[32]1,0851.

Proposition 5.1 and 5.3 give combinatorial interpretation of
the coefficients of the power series 1/D{G;x) and D{G\M;x)/D(G;x) where
G\M den¢tes the graph obtained by deleting from G the set of edges M
(resp. set of vartices M).

If M isg the set of edges containing a vertex g, then
D (GuM; x) /D (G5 %) is the generating function for the so-called tree-iike
paths intrgoduced by Godsil [31]1 in order to give a nice proaf of the
fact that the roots of matching polynomials are real numbers (Heilmann,
Lieb [351). In Desainte-Catherine, ¥Yiennot [15} we deduce bijectively
Godsil’s result and give some generalizati ons.

Remark that trea-like paths correspond exectly {via tha
bijection of proposition 6.3) to pyramids with the restriction that all
the cycles have length Z.Such cycles can be identified with dimers of G

o) Chromatic polynomials and acvclic orientations of gravhs
(from Gessel [30])

Let G be a finite graph with n vertices, ¥(G;jx) be the
ehromatic polynomial of G and ®(G) be the number of acyciic orienta—
tions of G.In [45] Sten!ey hes proved the following identity,

(27) ¥(G;-1) = (-1} wi(q).

Gessal [30]1 has given a nice proof of this identity, using the
commutat i on monoid. Here we just sketch the idea of his proof,
translated in terms of heaps.

Let G = ({3,A) with set of vertices & {resp. edges A). Let ® be
the concurrency relation such that G is its concurrency graph (see 84) .
Let E be a heap of H($,¥). For k » 1, wa denote by py(E}) the number of
factorizations of € in the form E = Ty® ...®Ty where each T; is a
non-ampty trivial heap f(remark that condition (2) of lemme 2.9 is not
necessarily satisfied), Let v be a valuation on the heap moensid H(S,%)
@3 in §b. A heep E |3 called [inear (resp. covering) iff each basic
piece appears at most (resp. at least) once in E. A linear and covering
heap E is a product (in H(S,¥}) of all the basic pieces S. Let LC(S,®)
be the set of such heeps. We have the reletion

1
(28) ¥(G;x) = E — ) By (B) [x(x-1)... {x—k+1),
k!

k30 EELC (S,®)
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introduce the complete chromatic power gerie of the

graph G.
1
(28) I (G;x) =§ — ) Br (E)v(EY| xix-1)...(x—Kk+1).
k!
k;D EGH(S]?)
e have
-1
(30) > B (E) v(E) t* = | 1 - 1t ) v (F) .
E, kald 3
where the firsgt summation is over all heaps EEH(S,¥) and the second is
restricted to negn-emptly trivial heaps. From relation (12) of
proposition 5.1, we deduce (a bijective proof would also be possible)
(31} T(G;-1) = (-1 ™ ) v (E)
EEH (S ,¥)
The restriction to linear and covering heaps givas (27).
9. Hoaps and Statistical Physics
a) The directed animal problem (summary of VYiennaot [50))
In 18B2, physicists have introduced

and studied the following probiem,
a saet A of

A directed animafl

and any peoint (x,

source point and

size of the animel

Fig.10. A directed animal, tributed, lat £, (rasp.
ong source point, averagsa width (resp.

diractaed animals with

gquare lattica,

is
points of W % M such that

y)

A

in A,
North

is called
North-East
catled privitigied direction.
1s described
by its width and Jlength (i.e.
of tha smallest

(0,0) € A
of A can bhe
reached by a path going from (0,0)
to {x,¥), with vertices
using alementary steps

East. The point (O,0})

and
or
the
is
The

size

rectanglse

centaining A with edges perallsi
perpandicular fo the

or

priviligied
diraction}j, Let ap be the number of
n points.
Considering these animals equidis-
Lal be the

langth) .



345

Physicists expect the following asymptotic behaviour
(32) By o~ g 0", 24w 0%y La ~ n'%.

The constants 8, v and v, are called criticel expoments. Such
numbers gre of particular importance Iin the models for phase
transitions and critical phenomene.

A surprising fact is that very simple exact formulae exist fer
4y and ¢, from which one get immediately u=3, €= v, = 1/2. After many
other works (for =& survey see [481) , physics golutions are given by
Dhar [163, ({171 and Hekim, Nadal 1341 following Nadal, Derrids,
Yannimenus [41])

A complete combinaterial seoluticn (for &, and {£,) c¢an be given
by wusing heaps basic properties and a bijection betwaen directed
gnimals (with one source point) end certain pyremids of dimers en 2.
This is dpne in [50}, where soma conjectures of Dhar [18] are proved. A

survey of the directed animal model, with both physics and
combingatorial solutians, and relationship with other problems and
mode |l s, is given in Yiennot [49] . The case of directed animals on a

triangular Jgttice is easier. A "brute force” bhijsction between
directed animals and certain paths has been given by Gouycu-Beeuchamps,

Viennot [33) . This bijection ig the same as the one obtained using
heaps.

I n the physics solution, HNadal,

: Derride, Yannimenus [413, Hakim,

Nadel [34] consider directed animals
on a bounded strip : sevearal source
points are now possible (see Fig.
11). The borders may be ldantif|ed
{(circular strip). Using transition
matrices acting on a4 space of sping,
they give e formula for the number
of such animals with given source

points. This formula is easl|ly
obtained from the generating
function of =uch animals, which is a
rational serie N{t) /D (1) . The

polynomials N(1) and D(%) can bea

deduced from 37 and propeosition .3,

using Tchebycheff polynomiels first

Fig.11. Directed animals kind {circular strip) and second
on a bounded strip kind (bounded strip).

The preblem of the existence and determinaetion of the axponent
g,is stil! open. it is conjectured [411 to be 9/11.
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by Cowmblnatorlal interpretation of the density of a gus with
hard-core Interactions (summary of Viennot {51})

Here we use propositions 5.t and 5.10 in the case of the
independency polynamlials of example 5.8. The heaps model put some |ight
on the so-called “"thermodynamic limit" of the independency polynomials.
We obtain a combinatorial interpretation of the partiticon function Z(t)
{on an infinite lattice) and of the density

(38) p(t)y= t d/dt leg Z(t).

In fact,
(34) -p(-t) = £ apt",
>0
where the a, are positive Integers enumerating certain pyramids.
Using statistical mechanice technigues, Baxter has recently
solved [B1 the famous hard hexagon modele. This model has a phass
transition for the "activity" t.,=(11+5V5)/2. For O<t<t,, the partition

fonctlian Z(t) igs given by the following system of egquations

Let Rp(g) {resp. Rip(a)) be the left hand-side of the first

{resp. second) Rogers-—-Ramanujan identity (25) (resp. (26)). The
partition fonction Z(t) is obtained by eltiminating q between the two
following squaticons

Rig(g)45
(35) t = -q [—————] s

R1(q)

[1_qﬁn+2](1_qﬂn+3)2(1_qﬂn+4)(1_q5+1]2(1_q5n+4}2(1_q5n)8
(38) 7 = r-|_|-
A0 (1_q8n+1)(1_q3h+s}(1_q8n)2(1_q5n+2)3(1_q5n+3)3

From heaps basic lemmas, we
deduce that the coefficient &g
defined by aguations (33),
(34) , {3%)and (36} is the numbar
of pyramlds of hexagons on a
triengular |lattice, formed with
n hexagons, as shown on Fig.12.
11 would be of great interest
to prove directly the squations
gnumerating such pyramids of
hexagons, without using
Baxter’s solution {which has
nothing to do with heaps of
pieces). Also the combinatorics
of heaps praoves the eguivalence

betwaen directaed animels

problems and hard-core gas

Fig.12. A pyramid of hexagons model, as shown recantly by
rinterpretating the density of the Dhar [171 using physics

gas in the hard haxagon model. argumants,
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10. Heaps and paralielism in Computer Science

Finally, commutation monoids hawve recently appeared in
Theoretical Computer Science as a model for paralielism end concurrent
access to datebases. This is an ective and promising area of research
and a meating on this subject tock place in Paris, March 1985, and
ancther i1s plannaed in 13288,

& datebase is @ set of cbjects called entities. A transaction
is any sequance of atomic actions operating on the entities. Seversl
transactions can access concurrently to the same database. An ection is
identified with =& ietter and 8 transaction with a word. Commutations
are defined on thease ietters, describing the possible concurrency
accass to ihe database. The mode| can be developped from an algebraic
peint of view (rationmal and recogrnizable languages in this monoid,...)
in analogy with the free mengid CASe (see for axampla
(73,012],€133,1191,0231,[421}. Another direction introduced by Frangon
(287,0281F and Arques et 8l.[41,[5]1 is combinatorial. This direction,
following some ideas of Papadimitriou ([42] and related papers) a!lows
the comparisen of the performances of concurrency control algorithms
with the computation of the cost of serialization of an execution or
with the determination of Frangen's parallelism ratio, frequency of
dead!ocked executions,etc... These problems c¢an be reduced to the
asymptatic enumeration of c¢certain sets of commutation classes, or
enumeration of words in thess classes.

The heap monoid model may bring other ideas about these
guastions. First of all, repiacing the alphabet (which letters are a
coding of the atomiec actions) by a et of basic piecas P, equipped with
8 basis B and 8 projection map m: P -+ #(B) can be closer to concurrency
considerations. For example one can consider the basis B to be the set
of entities. An atomic action, symbolized by the basic piece ®xE€EF, will
operates on the subset w(w)cB of entities. This atomic action, exactly
B8 the basic piece, is a certain “"structure”™ on the support w(®). The
concurrency relation of %4 will coarresponds te atomic actions having
access to common antities. Under this model, two actions will commuta
iff they operate on digsjoint subsets of entities.

Ancthar fdeg I8 to use heaps of pleces 45 a new data structure
in Computer 3cience. This structure appears as 8 generalization of the
binary tree structure (which I8 a poset and thus can be “realized" as a
heap) and the structure formed by several| Independant stacks. One can
Iimplement the heap data structure by its fibers, or by defining /inks
between & piece x and the pieces B which are covered by ®. This data
structure would be of particular advantage in parallel algorithms.

In conclusion, one of the interest of the heaps formufation is
to relate some problems coming from completely different fields, as for
exampie the determination of the criticael exponents of the directed
animels problem in Statistical Physiecs and the computation of Frangon's
ratio of parallelism., Both are equivalent to asymptetic enumeration of
certains heaps. Some problems are eguivalent to enumerate the number of
words in a commutation class (as for example "aggregats” problems in
Statistical Physics). From 83, this |5 equivalent to enumerate |inear
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extensions of & agiven poset. This problem is well-known in poset
theory and eaxplicit formulasg exist only in certain particular cases
(standard Young tableaux, standard shifted Young tableaux, treas,...).

Of course, the difficuity of the problem remains the same in both
peints of wview, but the spatial intuition, the powarfu! basic heaps
temmes and the conneciions made betwsan different domains may be useful
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