Heaps of pieces

(with interactions in mathematics in physics)

Ch6 Heaps and algebraic graph theory

Universidad de Talca, Chile December 2013, January 2014

14 January 2014

Xavier Viennot LaBRI, CNRS, Bordeaux Basic definitions and theorems:

Ch1 Commutations monoids and heaps of pieces: basic definitionsCh2 Generating functions for heaps of piecesCh3 Heaps and paths, flow monoids, rearrangements

Some applications in classical mathematics:

Ch4 Heaps and linear algebra: bijective proofs of classical theoremsCh5 Heaps and combinatorial theory of orthogonal polynomialsand continued fractions

Ch6 Heaps and algebraic graph theory

 <u>Some applications in theoretical physics:</u>
 Ch7 Directed animals and gas model in statistical physics, Lorentzian triangulations in 2D quantum gravity
 Ch8 Polyominoes, q-analogue and SOS model in physics

<u>Applications to more advanced mathematics:</u>
Ch9 Fully commutative class of words in Coxeter groups
[Representation theory in Lie algebras with operators on heaps]
classes at two levels

algebraic graph theory

algebraic objects ex: polynomials combinatorial of graphs <> linear algebra N. Biggs "Algebraic graph Theony" (1974) Connection S. Statistical physics with E. Knots theory Heaps of gieces

some Polynomials associated to Graphs graph $G = (V, E) \rightarrow polynomial P(G; x)$

characteristic polynomial of a graph G A adjacency matrix $A = (a_{ij}) \qquad a_{ij} = \begin{cases} 1 & a_{ij} \\ 0 & \chi \end{cases}$

chromatic polynomial $\Gamma_{G}(\lambda) = number of ways$ coloring a graph $with <math>\lambda$ colors different cobrs chromatic number $\nu(G) = \text{smallet number } \nu$ such that $\Gamma(G; \nu) \neq 0$ zéros of r(G; X)

graph $G = (V, E) \rightarrow polynomial P(G; x)$ Tutte = $\sum_{x} \chi y$ χy

Matching polynomial G graph $C_{G}(\mathbf{x}) = \sum_{\mathbf{x}} (-1)^{|\mathbf{x}|} \mathbf{x}^{n-2|\mathbf{x}|}$ matching

Matching polynomial G graph $C_{G}(x) = \sum_{\alpha} (-1)^{|\alpha|} x^{n-2|\alpha|}$ matching

onumber of perfect matchings = constant term in the matching polynomial -> · & follian, determinant (for planar graph) · Joing model (magnetism ...)

Tilings of a chessboard with dimers

the number of tilings for the 8 x 8 chessboard = 12988816

the number of tilings with dimers a $m \times n$ rectangle is

it is an integer !

for a chessboard m=8, n=8: 12 988 816

number of spanning trees ٢ number of of G acyclique orientations 6

Characterístic polynomial

2- eigenvalues à 2- eigenvectors vib A $AV = \lambda M$ > zéro of the polynomial $\chi(\alpha) = det (\lambda I - A)$ characteristic of G

 $det(A_n - xI)$

If the first the 200 then the zeros of the orthogonal plynomial related to J by Joing The first are real numbers $A^{\#} = \begin{bmatrix} b_0 & h_1 \\ h_1 & h_2 \\ h_1 & h_2 \\ h_1 & h_2 \\ h_1 & h_2 \\ h_1 & h_1 \\ h_1 & h_2 \\ h_1 & h_1 \\ h_1 & h_2 \\ h_1 & h_1 \\ h_1 & h_2 \\ h_1 &$

matching polynomial

Matching polynomial G graph $C_{G}(\mathbf{x}) = \sum_{\mathbf{x}} (-1)^{|\mathbf{x}|} \mathbf{x}^{n-2|\mathbf{x}|}$ matching

Matching polynomial G graph $C_{G}(x) = \sum_{\alpha} (-1)^{|\alpha|} x^{n-2|\alpha|}$ matching

 $F_{n}(x) = \sum_{k=1}^{n} (-1)^{k} a_{n,k} x^{n-2k}$

 $\bigcup_{n}(\mathbf{x}) = F_{n}(2\mathbf{x})$

 $Sin((n+1)\theta) = sin \theta \bigcup (cos \theta)$

 $cos(n\theta) = T_n(cos\theta)$

Tche by cheff 1st 2nd Catalan

ex: Hermite $H_{n}(x) = \sum_{\substack{\text{matching } \\ \text{of } K_{n}}} (-1)^{|\mathcal{X}|} x^{\text{fix}(\mathcal{X})}$ Ken= 1×3×...× (2n-1) number of perfect matchings of Ken

Prop. For every graph G the zeros of the matching polynomial C(G; z) are real numbers = 2 x heap of dimers over G

1007 If G is a tree, then $C(G; x) = \chi(x)$ det (x I - A) polynomial characteristic polynomicl

 $T_u(G)$

Tree - like <u>a graph</u> G = (P, C) 01 Self-avoiding yeles heap
 path
 on G (arborescent") if all yeles of F have length 2

Byjection Paths w -> (7, E) · ? self-avoiding path going from a to v · E heap of cycles, $\pi(\alpha)$, $\alpha \in \max(E)$ intersects p

W = (so=u, ..., sn=v) path on B a -> (7; Ex,..., & 3) self-avoiding path sequence of cycles self-avoiding path (coupe") unsu

for
$$T = 0, 1, ..., n$$
, $\begin{cases} Coupe_T(\omega) : self-auxiding path
Suite_T(\omega) : wyles requence.
Gupe_O(w) = (As) Suite_O(w) = Ø
 $\begin{cases} Gupe_T(w) = (As, ..., A_{i_T}) & A_{i_T} & A_{i_T$$

Particular cases. • Dyck path • bilateral Dyck... paths

2)^(Godsil) tree-like 1.1 paths in tree paths in G **T**(G) U

Lemma. G, u There exist a tree T, r root n T W tree-like \leftrightarrow 1001=171 on G 4 m

 $T_u(G)$ vertices =) self-avoiding paths ?? 1 starting from a ?? edges z $\frac{1}{2} = (\lambda_0, \dots, \lambda_k)$ $\frac{1}{2} = (\lambda_0, \dots, \lambda_k, \lambda_{k+1})$ iff

There exist thee T, root, v $\frac{C(T \setminus y; x)}{C(G \setminus y; x)}$ C^{*}(T; x) C^{*}(G; x)

3) C*(T;t) = x*(T;t) polynöme caracteristique de l'arbre T · valeurs propres d'une matrice symétrique · zéros réels, par récurrence sur 15!

Prop- For every graph G the zeros of the matching polynomial C(G; z) are real numbers

Heilman, Lieb (1972) Gruber, Kunz (1971) Godsil, Gutman (1981)

Tree-like continued fraction

two-point Tadé approximant at O and ∞.

Skorobogat'ko, Dronjuk, Bobik, Ptašnik 1967 oscillating mechanical systems Pustomel'nikov 1969 differential equation on a Cori, Vauquelin planar maps Françon, Arques

chromatic polynomial and acyclic orientations of a graph

Preuve (Geodel)

$$\Gamma(\lambda) = \sum_{\substack{1 \le k \le n \\ k \le n}} a_k(G) \quad \lambda(\lambda-1) - (\lambda-k+1)$$

$$\int de \quad partitions \quad coloredr'' de G \quad en \quad k \quad leves$$

$$\Gamma(\lambda) = \sum_{\substack{k \le n \\ k \le n}} b_k(G) \quad \frac{\lambda(\lambda-1) \dots (\lambda-k+1)}{k!}$$

$$\int de \quad partitions \quad coloreds \quad orderinder''$$

Monoide de commutations alphabet S G graphe des non-commutations - classe multilinéraire : contient une et une seule fois chaque lettre de S - V- factorisation d'une classe ~ lettres distincter commutant 2 22 (-> stable de G)

b_k(x) = nb de V-factorisations de le classe x en k blocs • $\Gamma(\lambda) = \sum_{1 \le k \le n} \left(\sum_{\substack{\alpha \\ classe}} b_k(\alpha) \right)_{k!} \frac{1}{\lambda(\lambda-1)} \frac{1}{(\lambda-k+1)} \frac{1}{k!} \frac{1}{\lambda(\lambda-1)} \frac{1}{(\lambda-k+1)} \frac{1}{k!} \frac{1}{k!} \frac{1}{\lambda(\lambda-1)} \frac{1}{(\lambda-k+1)} \frac{1}{k!} \frac{1}{$ multilingare

· "serie chromatique" $K(t) = \sum_{k \geq 0} \left(\sum_{\substack{\alpha \in k \\ \alpha \neq \alpha}} b_k(\alpha) v(\alpha) \right) t^k$ V(d) valuation $1-t\left(\sum_{x} v(x)\right)$ classe stable 7 vide (d'agnées Cartier-Foata, inversion de Médius) $K(-1) = \sum (-1)^{|X|} v(x)$ classe $\Rightarrow \Gamma(-1) = \sum_{\substack{n \in \mathbb{N} \\ \text{classe}}} (-y)^{|n|}$ mult iline aire

· Ainsi, (-1) " (-1) est le nombre de classes multilineraires. • Bijection Classes multilinersires Orientations acycliques du graphe G

Remarque: Prop- ("thebreme" des 4 couleurs)". Tout graphe planaire peut être reconvert par un empilement de haukeur <4 24 (E recourre le graphe de concurrence (P, E) soi pour tout SEP, le tube au-dessus de s est non vide hauteur de l'empilement E = niveau maximum des pieces de E = nb de blocs de la forme normale ta

