Escuela de Investigación CIMPA "Álgebra, Combinatoría y Fisica"

Facultad de Ingeniería, Universidad de Valparaiso, Chile Valparaíso, 20-31 Enero 2014 -

29 Enero 2014
cursol

Xavier Viennot
LaBRI, CNRS, Bordeaux
http://cours.xavierviennot.org

Courses Talca, Chile 2013/2014
Cours Universidad de Talca
(December 2013 - January 2014)
Heaps of pieces (24 h)
(with interactions in mathematics and physics)

Basic definitions and theorems:

Ch1 Commutations monoids and heaps of pieces: basic definitions
Ch2 Generating functions for heaps of pieces
Ch3 Heaps and paths, flow monoids, rearrangements

Some applications in classical mathematics:

Ch4 Heaps and linear algebra: bijective proofs of classical theorems
Ch5 Heaps and combinatorial theory of orthogonal polynomials and continued fractions
Ch6 Heaps and algebraic graph theory
Some applications in theoretical physics:
Ch7 Directed animals and gas model in statistical physics, Lorentzian triangulations in 2D quantum gravity
Ch8 Polyominoes, q-analogue and SOS model in physics
Applications to more advanced mathematics:
Ch9 Fully commutative class of words in Coxeter groups
[Representation theory in Lie algebras with operators on heaps]

http://cours.xavierviennot.org

> Courses Talca, Chile 2013/2014 Cours Universidad de Talca
> (December 2013 - January 2014)
> Heaps of pieces (24 h)
> (with interactions in mathematics and physics)
X.G.Viennot,

Introduction to the theory of pieces with applications to statistical mechanics and quantum gravity in workshop "Combinatorial Identities \& their Applications in Statistical Mechanics",

Isaac Newton Institute for Mathematical Science, Cambridge, 7 April 2008 slides and video

Ch1

Commutation monoids
and heaps of pieces:
basic definitions

§1 Commutation monoids

Cartier-Foata commutation monoid
Lecture Note in Maths n.85 (1969)
"Problemes combinatoires de commutation et réarrangements"

alphabet A
free monoid A^{*}
words $w=a_{1} a_{2} \cdots a_{p}$
procluct : concatenation
$\left.\begin{array}{l}u=a_{1} \ldots a_{1} \\ v=b_{1} \ldots\end{array}\right\} u v=a_{1} \cdot a_{p} b_{1} \ldots b_{q}$
empty word
commutation relation C antineflexive symmetric
\equiv congruence of A^{*} generated by the commutations $a b \equiv b a$ iff $a<b$
ex: $\quad A=\{a, b, c, d\}$
C $\left\{\begin{array}{l}a d=d a \\ b c=c b \\ c d=d c\end{array}\right.$
equivalence class

$\$ 2$ Heaps of pieces: basic definitions

heap
definition

- P set (of basic pieces)
- E binary relation on $P\left\{\begin{array}{l}\text { symmetric } \\ \text { reflexive }\end{array}\right.$
(dependency relation)
- heap E, finite set of pairs $(\alpha, i) \quad \alpha \in P, i \in \mathbb{N} \quad$ (called pieces) projection level
(i)
(ii)
heap definition
- P set (of basic pieces)
- E binary relation on $P\left\{\begin{array}{l}\text { symmetric } \\ \text { reflexive }\end{array}\right.$ (dependency relation)
- heap E finite set of pairs $(\alpha, i) \quad \alpha \in P, i \in \mathbb{N} \quad$ (called pieces)
projection level
(i) $(\alpha, i),(\beta, j) \in E, \alpha \mathcal{C}_{\beta} \Rightarrow i \neq j$
(ii) $(\alpha, i) \in E, i>0 \Rightarrow \exists \beta \in P, \alpha \mathcal{C}_{\beta}$,

$$
(\beta, i-1) \in E
$$

Heap of dimers
. over $[1, n]$

$$
-p(-t)=y
$$

Proposition

$$
\begin{aligned}
& \operatorname{Heap}(P, \varepsilon) \simeq P / / \equiv c \\
& C=P_{\substack{\text { commutation } \\
\text { menoid }}}^{\text {complementrany }} \text { (reation }
\end{aligned}
$$

heaps of dimers

$$
(i ; i+1)
$$

on $\{0,1, \ldots, n-1\}$
generators $\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n-1}\right\}$

$$
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}
$$

of $|i-j| \geqslant 2$

$$
w=\sigma_{1} \sigma_{2} \quad \sigma_{4} \sigma_{1} \quad \sigma_{4} \quad \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
w=\sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
W=\begin{array}{l|l|l|l|l|l|l|}
\\
\hline & \sigma_{1} & \sigma_{2} & \sigma_{4} & \sigma_{1} & \sigma_{4} & \sigma_{3} \\
\hline
\end{array} \sigma_{0} \quad \sigma_{4}
$$

$$
W=\sigma_{1} \sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
W=\sigma_{1} \sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
\begin{aligned}
& W=\overrightarrow{\sigma_{2}} \sigma_{3} \quad \sigma_{5} \sigma_{1} \sigma_{4} \sigma_{1} \sigma_{3} \\
& W=\sigma_{5} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{3} \sigma_{4} \sigma_{3} \\
& \left.\right|_{0}
\end{aligned}
$$

Proposition

$$
\begin{aligned}
& \operatorname{Heap}(P, \varepsilon) \simeq P / / \equiv c \\
& C=P_{\substack{\text { commutation } \\
\text { menoid }}}^{\text {complementrany }} \text { (reation }
\end{aligned}
$$

heaps monoid
s3 Heaps and posets

maximal pieces

Pyramid
Def- Heap having only one maximal piece

$$
-p(-t)=y
$$

$$
W=\sigma_{1} \sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
w=\sigma_{1} \sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

$$
w=\sigma_{1} \sigma_{2} \sigma_{4} \sigma_{1} \sigma_{4} \sigma_{3} \sigma_{0} \sigma_{4}
$$

